Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127302    DOI: 10.1088/1674-1056/acf448
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Real-time dynamics in strongly correlated quantum-dot systems

Yong-Xi Cheng(程永喜)1,2,3, Zhen-Hua Li(李振华)2,†, Jian-Hua Wei(魏建华)4, and Hong-Gang Luo(罗洪刚)2
1 Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China;
2 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
3 Beijing Computational Science Research Center, Beijing 100193, China;
4 Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  We investigate the real-time dynamical properties of Rabi-type oscillation through strongly correlated quantum-dot systems by means of accurate hierarchical equations of motion. It is an extension of the hierarchical Liouville-space approach for addressing strongly correlated quantum-dot systems. We study two paradigmatic models, the single quantum-dot system, and serial coupling double quantum-dot system. We calculate accurately the time-dependent occupancy of quantum-dot systems subject to a sudden change of gate voltage. The Rabi-type oscillation of the occupancy and distinct relaxation time of the quantum-dot systems with different factors are described. This is helpful to understand dissipation and decoherence in real-time dynamics through nanodevices and provides a theoretical frame to experimental investigation and manipulation of molecular electronic devices.
Keywords:  quantum dots      mesoscopic transport      decoherence  
Received:  28 May 2023      Revised:  06 August 2023      Accepted manuscript online:  28 August 2023
PACS:  73.63.Kv (Quantum dots)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11804245, 11747098, 11774418, 12247101, and 12047501), the Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province, China (Grant No.2021L534), and the Fund from the Ministry of Science and Technology of China (Grant No.2022YFA1402704).
Corresponding Authors:  Zhen-Hua Li     E-mail:  lizhenhua@lzu.edu.cn

Cite this article: 

Yong-Xi Cheng(程永喜), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华), and Hong-Gang Luo(罗洪刚) Real-time dynamics in strongly correlated quantum-dot systems 2023 Chin. Phys. B 32 127302

[1] Reed Mark A 1993 Scientific American January 268 118
[2] Timm Carsten and Ventra Massimiliano Di 2012 Phys. Rev. B 86 104427
[3] Miyamachi T, Gruber M, Davesne V, Bowen M, Boukari S, Joly L, Scheurer F, Rogez G, Yamada T K, Ohresser P, Beaurepaire E and Wulfhekel W 2012 Nat. Commn. 3 938
[4] Jeong H, Chang A M and Melloch M R 2001 Science 293 2221
[5] Kim D J and Fisk Z 2012 Appl. Phys. Lett. 101 013505
[6] Shi J R, Ma Z S and Xie X C 2001 Phys. Rev. B 63 201311(R)
[7] Cohen G, Reichman D R, Millis A J and Gull E 2014 Phys. Rev. B 89 115139
[8] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
[9] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[10] Bednorz J G and Müller K A 1986 Z. Phys. B Condensed Matter 64 189
[11] Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[12] Anders F B and Schiller A 2005 Phys. Rev. Lett. 95 196801
[13] Fujisawa T, Hayashi T and Sasaki S 2006 Rep. Prog. Phys. 69 759
[14] Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B and Triller A 2003 Science 302 442
[15] Zheng Y D 2019 J. Appl. Math. Phys. 7 1677
[16] Wingreen N S, Jauho A P and Meir Y 1993 Phys. Rev. B 48 8487
[17] Hershfield S, Davies J H and Wilkins J W 1991 Phys. Rev. Lett. 67 3720
[18] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[19] Zhang P and Zhao X G 2000 Phys. Lett. A 271 419
[20] Cazalilla M A and Marston J B 2002 Phys. Rev. Lett. 88 256403
[21] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401
[22] Daley A J, Kollath C, Schollwöock U and Vidal G 2004 J. Stat. Mech. p04005
[23] Chen F Z, Cheng C and Luo H G 2021 Chin. Phys. B 30 080202
[24] Wilson Kenneth G 1975 Rev. Mod. Phys. 47 773
[25] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
[26] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
[27] Zheng X, Jin J S and Yan Y J 2008 J. Chem. Phys. 129 184112
[28] Zheng X, Luo J Y, Jin J S and Yan Y J 2009 J. Chem. Phys. 130 124508
[29] Zheng X, Jin J S and Yan Y J 2008 New J. Phys. 10 093016
[30] Zheng X, Jin J S, Welack S, Luo M and Yan Y J 2009 J. Chem. Phys. 130 164708
[31] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
[32] Zheng X, Xu R X, Xu J, Jin J S, Hu J and Yan Y J 2012 Prog. Chem. 24 1129
[33] Cheng Y X, Li Z H, Wei J H, Luo H G, Lin H Q and Yan Y J 2020 Sci. China, Phys. Mech. Astron. 63 297811
[34] Zheng X, Yan Y J and Ventra M D 2013 Phys. Rev. Lett. 111 086601
[35] Cheng Y X, Hou W J, Wang Y D, Li Z H, Wei J H and Yan Y J 2015 New J. Phys. 17 033009
[36] Sun F L, Wang Y D, Wei J H and Yan Y J 2020 Chin. Phys. B 29 067204
[37] Sun F L, Li Z H and Wei J H 2020 Chin. Phys. B 29 067302
[38] Blick R H, Pfannkuche D, Haug R J, Klitzing K V and Eberl K 1998 Phys. Rev. Lett. 80 4032
[39] Li Z P, Wu S Q and Zhao G P 2014 Chin. Phys. Lett. 31 047201
[40] Waugh F R, Berry M J, Mar D J, Westervelt R M, Campman K L and Gossard A C 1995 Phys. Rev. Lett. 75 705
[1] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[2] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[3] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[6] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[7] Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications
Changfeng Han(韩长峰), Ruoxi Qian(钱若曦), Chaoyu Xiang(向超宇), and Lei Qian(钱磊). Chin. Phys. B, 2023, 32(12): 128506.
[8] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[9] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[13] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!