Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068101    DOI: 10.1088/1674-1056/ac4cb8

Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes

Ying-Zhe Wang(王颖哲)1, Mao-Sen Wang(王茂森)2, Ning Hua(化宁)2, Kai Chen(陈凯)2, Zhi-Min He(何志敏)2, Xue-Feng Zheng(郑雪峰)1,†, Pei-Xian Li(李培咸)3, Xiao-Hua Ma(马晓华)1, Li-Xin Guo(郭立新)4, and Yue Hao(郝跃)1
1 Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Shanghai Aerospace Electronic Technology Institute, Shanghai 201109, China;
3 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
4 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  The degradation mechanism of GaN-based near-ultraviolet (NUV, 320-400 nm) light emitting diodes (LEDs) with low-indium content under electrical stress is studied from the aspect of defects. A decrease in the optical power and an increase in the leakage current are observed after electrical stress. The defect behaviors are characterized using deep level transient spectroscopy (DLTS) measurement under different filling pulse widths. After stress, the concentration of defects with the energy level of 0.47-0.56 eV increases, accompanied by decrease in the concentration of 0.72-0.84 eV defects. Combing the defect energy level with the increased yellow luminescence in photoluminescence spectra, the device degradation can be attributed to the activation of the gallium vacancy and oxygen related complex defect along dislocation, which was previously passivated with hydrogen. This study reveals the evolution process of defects under electrical stress and their spatial location, laying a foundation for manufacture of GaN-based NUV LEDs with high reliability.
Keywords:  light emitting diodes      GaN      electrical stress      defect  
Received:  24 November 2021      Revised:  26 December 2021      Accepted manuscript online:  19 January 2022
PACS:  81.05.Ea (III-V semiconductors)  
  85.60.Jb (Light-emitting devices)  
  73.21.Fg (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62104180, 61974115, 11690042, 61634005, 61974111, 12035019, and 61904142), and the Fundamental Research Funds for the Central Universities (Grant No. XJS221106), and the Key Research and Development Program of Shaanxi, China (Grant No. 2020ZDLGY03-05).
Corresponding Authors:  Xue-Feng Zheng     E-mail:

Cite this article: 

Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃) Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes 2022 Chin. Phys. B 31 068101

[1] Kebbi Y, Muhammad A I, Sant'Ana A S, do Prado-Silva L, Liu D and Ding T 2020 Comprehensive Reviews in Food Science and Food Safety 19 3501
[2] Khan M A, Takeda R, Yamada Y, Maeda N, Jo M and Hirayama H 2020 Opt. Lett. 45 495
[3] Md Sahar M A A Z, Hassan Z, Ng S S, Lim W F, Lau K S, Alias E A, Ahmad M A, Hamzah N A and Mohd Asri R I 2021 Microelectron. Int. 38 119
[4] Gao J D, Zhang J L, Quan Z J, Liu J L and Jiang F Y 2020 Chin. Phys. B 29 047802
[5] Monti D, Meneghini M, Santi C D, Meneghesso G and Zanoni E 2016 IEEE Trans. Dev. Mater. Reliab. 16 213
[6] Meneghini M, Fabris E, Ruzzarin M, De Santi C, Nomoto K, Hu Z, Li W, Gao X, Jena D, Xing H G, Sun M, Palacios T, Meneghesso G and Zanoni E 2020 Phys. Status Solidi A 217 1900750
[7] Dalapati P, Yamamoto K, Egawa T and Miyoshi M 2021 Appl. Phys. Lett. 118 021101
[8] Rossi F, Pavesi M, Meneghini M, Salviati G, Manfredi M, Meneghesso G, Castaldini A, Cavallini A, Rigutti L, Strass U, Zehnder U and Zanoni E 2006 J. Appl. Phys. 99 053104
[9] Meneghini M, Tazzoli A, Mura G, Meneghesso G and Zanoni E 2010 IEEE Trans. Electron Dev. 57 108
[10] Meneghini M, de Santi C, Trivellin N, Orita K, Takigawa S, Tanaka T, Ueda D, Meneghesso G and Zanoni E 2011 Appl. Phys. Lett. 99 093506
[11] Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P and Lee C 2015 IEEE Trans. Nucl. Sci. 62 2423
[12] Lv Q J, Zhang Y H, Zheng C D, Gao J D, Zhang J L and Liu J L 2020 Chin. Phys. B 29 087801
[13] Su H, Xu S, Tao H, Fan X, Du J, Peng R, Zhao Y, Ai L, Wu H, Zhang J, Li P and Hao Y 2021 IEEE Electron Dev. Lett. 42 1346
[14] Li Y, Wang W, Huang L, Zheng Y, Li X, Tang X, Xie W, Chen X and Li G 2018 J. Mater. Chem. C 6 11255
[15] Wang J, You H, Guo H, Xue J, Yang G, Chen D, Liu B, Lu H, Zhang R and Zheng Y 2020 Appl. Phys. Lett. 116 062104
[16] Khan A, Balakrishnan K and Katona T 2008 Nat. Photon. 2 77
[17] Ruschel J, Glaab J, Susilo N, Hagedorn S, Walde S, Ziffer E, Cho H K, Ploch N L, Wernicke T, Weyers M, Einfeldt S and Kneissl M 2020 Appl. Phys. Lett. 117 241104
[18] Jung E, Lee J K, Kim M S and Kim H 2015 IEEE Trans. Electron Dev. 62 3322
[19] Xu M, Mu Q, Xiao L, Zhou Q, Wang H, Ji Z and Xu X 2016 Mater. Express 6 205
[20] Monti D, Santi C D, Ruos S D, Piva F, Glaab J, Rass J, Einfeldt S, Mehnke F, Enslin J, Wernicke T, Kneissl M, Meneghesso G, Zanoni E and Meneghini M 2019 IEEE Trans. Electron Dev. 66 3387
[21] Dalapati P, Yamamoto K, Egawa T and Miyoshi M 2020 Opt. Mater. 109 110352
[22] La Grassa M, Meneghini M, De Santi C, Mandurrino M, Goano M, Bertazzi F, Zeisel R, Galler B, Meneghesso G and Zanoni E 2015 Microelectron. Reliab. 55 1775
[23] Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301
[24] Neugebauer J and Van de Walle C G 1996 Appl. Phys. Lett. 69 503
[25] Lang D V 1974 J. Appl. Phys. 45 3023
[26] Lu L, Su S, Ling C C, Xu S, Zhao D, Zhu J, Yang H, Wang J and Ge W 2012 Appl. Phys. Express 5 091001
[27] Makimoto T, Kumarkura K, Nishida T and Kobayashi N 2002 J. Electron. Mater. 31 313
[28] Xie Z, Sui Y, Buckeridge J, Sokol A A, Keal T W and Walsh A 2018 Appl. Phys. Lett. 112 262104
[29] Cho H K, Khan F A, Adesida I, Fang Z Q and Look D C 2008 J. Phys. D: Appl. Phys. 41 155314
[30] Meneghini M, la Grassa M, Vaccari S, Galler B, Zeisel R, Drechsel P, Hahn B, Meneghesso G and Zanoni E 2014 Appl. Phys. Lett. 104 113505
[31] Hierro A, Arehart A R, Heying B, Hansen M, Speck J S, Mishra U K, DenBaars S P and Ringel S A 2001 Phys. Status Solidi B 228 309
[32] Usami S, Ando Y, Tanaka A, Nagamatsu K, Deki M, Kushimoto M, Nitta S, Honda Y, Amano H, Sugawara Y, Yao Y Z and Ishikawa Y 2018 Appl. Phys. Lett. 112 182106
[33] Kim J, Tak Y, Kim J, Chae S, Kim J Y and Park Y 2013 J. Appl. Phys. 114 013101
[34] Wright A F and Grossner U 1998 Appl. Phys. Lett. 73 2751
[35] Lee S M, Belkhir M A, Zhu X Y, Lee Y H, Hwang Y G and Frauenheim T 2000 Phys. Rev. B 61 16033
[36] Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, Öberg S and Briddon P R 1998 Phys. Rev. B 58 12571
[37] Chen J, Puzyrev Y S, Zhang E X, Fleetwood D M, Schrimpf R D, Arehart A R, Ringel S A, Kaun S W, Kyle E C H, Speck J S, Saunier P, Lee C and Pantelides S T 2016 IEEE Trans. Dev. Mater. Reliab. 16 282
[38] Johnstone D 2007 Summary of deep level defect characteristics in GaN and AlGaN SPIE 6473 64730
[39] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[40] Lyons J L, Wickramaratne D and Van de Walle C G 2021 J. Appl. Phys. 129 111101
[41] Emiroglu D, Evans-Freeman J, Kappers M J, McAleese C and Humphreys C J 2008 Phys. Status Solidi C 5 1482
[42] Kang T W, Bai I H, Hong C Y, Chung C K and Kim T W 1993 J. Mater. Sci. 28 3423
[43] Puzyrev Y S, Roy T, Beck M, Tuttle B R, Schrimpf R D, Fleetwood D M and Pantelides S T 2011 J. Appl. Phys. 109 034501
[44] Niu X, Ma X, Hou B, Yang L, Lin Y S, Zhu Q, Ciou F M, Chen K H, Chen Y, Du J, Wu M, Zhang M, Wang C, Chang T C and Hao Y 2021 IEEE Trans. Electron Dev. 68 4283
[45] De Santi C, Caria A, Piva F, Meneghesso G, Zanoni E and Meneghini M 2021 Reliability of Semiconductor Lasers and Optoelectronic Devices, edited by Herrick R W and Ueda O (Woodhead Publishing)
[46] Cao X A, Sandvik P M, LeBoeuf S F and Arthur S D 2003 Microelectron. Reliab. 43 1987
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[7] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[10] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[11] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[12] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[13] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[14] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!