INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes |
Ying-Zhe Wang(王颖哲)1, Mao-Sen Wang(王茂森)2, Ning Hua(化宁)2, Kai Chen(陈凯)2, Zhi-Min He(何志敏)2, Xue-Feng Zheng(郑雪峰)1,†, Pei-Xian Li(李培咸)3, Xiao-Hua Ma(马晓华)1, Li-Xin Guo(郭立新)4, and Yue Hao(郝跃)1 |
1 Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 Shanghai Aerospace Electronic Technology Institute, Shanghai 201109, China; 3 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 4 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China |
|
|
Abstract The degradation mechanism of GaN-based near-ultraviolet (NUV, 320-400 nm) light emitting diodes (LEDs) with low-indium content under electrical stress is studied from the aspect of defects. A decrease in the optical power and an increase in the leakage current are observed after electrical stress. The defect behaviors are characterized using deep level transient spectroscopy (DLTS) measurement under different filling pulse widths. After stress, the concentration of defects with the energy level of 0.47-0.56 eV increases, accompanied by decrease in the concentration of 0.72-0.84 eV defects. Combing the defect energy level with the increased yellow luminescence in photoluminescence spectra, the device degradation can be attributed to the activation of the gallium vacancy and oxygen related complex defect along dislocation, which was previously passivated with hydrogen. This study reveals the evolution process of defects under electrical stress and their spatial location, laying a foundation for manufacture of GaN-based NUV LEDs with high reliability.
|
Received: 24 November 2021
Revised: 26 December 2021
Accepted manuscript online: 19 January 2022
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
73.21.Fg
|
(Quantum wells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62104180, 61974115, 11690042, 61634005, 61974111, 12035019, and 61904142), and the Fundamental Research Funds for the Central Universities (Grant No. XJS221106), and the Key Research and Development Program of Shaanxi, China (Grant No. 2020ZDLGY03-05). |
Corresponding Authors:
Xue-Feng Zheng
E-mail: xfzheng@mail.xidian.edu.cn
|
Cite this article:
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃) Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes 2022 Chin. Phys. B 31 068101
|
[1] Kebbi Y, Muhammad A I, Sant'Ana A S, do Prado-Silva L, Liu D and Ding T 2020 Comprehensive Reviews in Food Science and Food Safety 19 3501 [2] Khan M A, Takeda R, Yamada Y, Maeda N, Jo M and Hirayama H 2020 Opt. Lett. 45 495 [3] Md Sahar M A A Z, Hassan Z, Ng S S, Lim W F, Lau K S, Alias E A, Ahmad M A, Hamzah N A and Mohd Asri R I 2021 Microelectron. Int. 38 119 [4] Gao J D, Zhang J L, Quan Z J, Liu J L and Jiang F Y 2020 Chin. Phys. B 29 047802 [5] Monti D, Meneghini M, Santi C D, Meneghesso G and Zanoni E 2016 IEEE Trans. Dev. Mater. Reliab. 16 213 [6] Meneghini M, Fabris E, Ruzzarin M, De Santi C, Nomoto K, Hu Z, Li W, Gao X, Jena D, Xing H G, Sun M, Palacios T, Meneghesso G and Zanoni E 2020 Phys. Status Solidi A 217 1900750 [7] Dalapati P, Yamamoto K, Egawa T and Miyoshi M 2021 Appl. Phys. Lett. 118 021101 [8] Rossi F, Pavesi M, Meneghini M, Salviati G, Manfredi M, Meneghesso G, Castaldini A, Cavallini A, Rigutti L, Strass U, Zehnder U and Zanoni E 2006 J. Appl. Phys. 99 053104 [9] Meneghini M, Tazzoli A, Mura G, Meneghesso G and Zanoni E 2010 IEEE Trans. Electron Dev. 57 108 [10] Meneghini M, de Santi C, Trivellin N, Orita K, Takigawa S, Tanaka T, Ueda D, Meneghesso G and Zanoni E 2011 Appl. Phys. Lett. 99 093506 [11] Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P and Lee C 2015 IEEE Trans. Nucl. Sci. 62 2423 [12] Lv Q J, Zhang Y H, Zheng C D, Gao J D, Zhang J L and Liu J L 2020 Chin. Phys. B 29 087801 [13] Su H, Xu S, Tao H, Fan X, Du J, Peng R, Zhao Y, Ai L, Wu H, Zhang J, Li P and Hao Y 2021 IEEE Electron Dev. Lett. 42 1346 [14] Li Y, Wang W, Huang L, Zheng Y, Li X, Tang X, Xie W, Chen X and Li G 2018 J. Mater. Chem. C 6 11255 [15] Wang J, You H, Guo H, Xue J, Yang G, Chen D, Liu B, Lu H, Zhang R and Zheng Y 2020 Appl. Phys. Lett. 116 062104 [16] Khan A, Balakrishnan K and Katona T 2008 Nat. Photon. 2 77 [17] Ruschel J, Glaab J, Susilo N, Hagedorn S, Walde S, Ziffer E, Cho H K, Ploch N L, Wernicke T, Weyers M, Einfeldt S and Kneissl M 2020 Appl. Phys. Lett. 117 241104 [18] Jung E, Lee J K, Kim M S and Kim H 2015 IEEE Trans. Electron Dev. 62 3322 [19] Xu M, Mu Q, Xiao L, Zhou Q, Wang H, Ji Z and Xu X 2016 Mater. Express 6 205 [20] Monti D, Santi C D, Ruos S D, Piva F, Glaab J, Rass J, Einfeldt S, Mehnke F, Enslin J, Wernicke T, Kneissl M, Meneghesso G, Zanoni E and Meneghini M 2019 IEEE Trans. Electron Dev. 66 3387 [21] Dalapati P, Yamamoto K, Egawa T and Miyoshi M 2020 Opt. Mater. 109 110352 [22] La Grassa M, Meneghini M, De Santi C, Mandurrino M, Goano M, Bertazzi F, Zeisel R, Galler B, Meneghesso G and Zanoni E 2015 Microelectron. Reliab. 55 1775 [23] Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301 [24] Neugebauer J and Van de Walle C G 1996 Appl. Phys. Lett. 69 503 [25] Lang D V 1974 J. Appl. Phys. 45 3023 [26] Lu L, Su S, Ling C C, Xu S, Zhao D, Zhu J, Yang H, Wang J and Ge W 2012 Appl. Phys. Express 5 091001 [27] Makimoto T, Kumarkura K, Nishida T and Kobayashi N 2002 J. Electron. Mater. 31 313 [28] Xie Z, Sui Y, Buckeridge J, Sokol A A, Keal T W and Walsh A 2018 Appl. Phys. Lett. 112 262104 [29] Cho H K, Khan F A, Adesida I, Fang Z Q and Look D C 2008 J. Phys. D: Appl. Phys. 41 155314 [30] Meneghini M, la Grassa M, Vaccari S, Galler B, Zeisel R, Drechsel P, Hahn B, Meneghesso G and Zanoni E 2014 Appl. Phys. Lett. 104 113505 [31] Hierro A, Arehart A R, Heying B, Hansen M, Speck J S, Mishra U K, DenBaars S P and Ringel S A 2001 Phys. Status Solidi B 228 309 [32] Usami S, Ando Y, Tanaka A, Nagamatsu K, Deki M, Kushimoto M, Nitta S, Honda Y, Amano H, Sugawara Y, Yao Y Z and Ishikawa Y 2018 Appl. Phys. Lett. 112 182106 [33] Kim J, Tak Y, Kim J, Chae S, Kim J Y and Park Y 2013 J. Appl. Phys. 114 013101 [34] Wright A F and Grossner U 1998 Appl. Phys. Lett. 73 2751 [35] Lee S M, Belkhir M A, Zhu X Y, Lee Y H, Hwang Y G and Frauenheim T 2000 Phys. Rev. B 61 16033 [36] Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, Öberg S and Briddon P R 1998 Phys. Rev. B 58 12571 [37] Chen J, Puzyrev Y S, Zhang E X, Fleetwood D M, Schrimpf R D, Arehart A R, Ringel S A, Kaun S W, Kyle E C H, Speck J S, Saunier P, Lee C and Pantelides S T 2016 IEEE Trans. Dev. Mater. Reliab. 16 282 [38] Johnstone D 2007 Summary of deep level defect characteristics in GaN and AlGaN SPIE 6473 64730 [39] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851 [40] Lyons J L, Wickramaratne D and Van de Walle C G 2021 J. Appl. Phys. 129 111101 [41] Emiroglu D, Evans-Freeman J, Kappers M J, McAleese C and Humphreys C J 2008 Phys. Status Solidi C 5 1482 [42] Kang T W, Bai I H, Hong C Y, Chung C K and Kim T W 1993 J. Mater. Sci. 28 3423 [43] Puzyrev Y S, Roy T, Beck M, Tuttle B R, Schrimpf R D, Fleetwood D M and Pantelides S T 2011 J. Appl. Phys. 109 034501 [44] Niu X, Ma X, Hou B, Yang L, Lin Y S, Zhu Q, Ciou F M, Chen K H, Chen Y, Du J, Wu M, Zhang M, Wang C, Chang T C and Hao Y 2021 IEEE Trans. Electron Dev. 68 4283 [45] De Santi C, Caria A, Piva F, Meneghesso G, Zanoni E and Meneghini M 2021 Reliability of Semiconductor Lasers and Optoelectronic Devices, edited by Herrick R W and Ueda O (Woodhead Publishing) [46] Cao X A, Sandvik P M, LeBoeuf S F and Arthur S D 2003 Microelectron. Reliab. 43 1987 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|