|
|
Chiral current regulation and detection of Berry phase in triangular triple quantum dots |
Yue Qi(齐月)1, Yi-Ming Liu(刘一铭)1, Yuan-Dong Wang(王援东)2, Jian-Hua Wei(魏建华)1,†, and Zhen-Gang Zhu(朱振刚)2,‡ |
1. Department of Physics, Renmin University, Beijing 100876, China; 2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Based on the hierarchical equations of motion (HEOM) calculation, we theoretically investigate the corresponding control of a triangular triple-quantum-dots (TTQD) ring which is connected to two reservoirs. We initially demonstrate by adding bias voltage and further adjusting the coupling strength between quantum dots, the chiral current induced by bias will go through a transformation of clockwise to counterclockwise direction and an unprecedented effective Hall angle will be triggered. The transformation is very rapid, with a corresponding characteristic time of 80-200 ps. In addition, by adding a magnetic flux to compensate for the chiral current in the original system, we elucidate the relationship between the applied magnetic flux and the Berry phase, which can realize direct measurement of the chiral current and reveal the magnetoelectric coupling relationship.
|
Received: 07 April 2023
Revised: 06 May 2023
Accepted manuscript online: 09 May 2023
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
11.30.Rd
|
(Chiral symmetries)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.11774418, 11374363,11674317, 11974348, 11834014,and 21373191), the Strategic Priority Research Program of CAS (Grant Nos.XDB28000000 and XDB33000000), and the Training Program of Major Research Plan of NSFC (Grant No.92165105). |
Corresponding Authors:
Jian-Hua Wei, Zhen-Gang Zhu
E-mail: wjh@ruc.edu.cn;zgzhu@ucas.ac.cn
|
Cite this article:
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚) Chiral current regulation and detection of Berry phase in triangular triple quantum dots 2023 Chin. Phys. B 32 087304
|
[1] Marrows C and Zeissler K 2021 Appl. Phys. Lett. 119 250502 [2] Xia J, Zhang X, Ezawa M, Tretiakov O A, Hou Z, Wang W, Zhao G, Liu X, Diep H T and Zhou Y 2020 Appl. Phys. Lett. 117 012403 [3] Jin Z, Meng C, Liu T, Chen D, Fan Z, Zeng M, Lu X, Gao X, Qin M and Liu J M 2021 Phys. Rev. B 104 054419 [4] Karnad G, Freimuth F, Martinez E, Conte R L, Gubbiotti G, Schulz T, Senz S, Ocker B, Mokrousov Y and Kläui M 2018 Phys. Rev. Lett. 121 147203 [5] Jin Z, Hu Y, Liu T, et al. 2021 arXiv preprint arXiv:2111.00738 [6] Tatara G, Kohno H and Shibata J 2008 Physics Reports 468 213 [7] Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899 [8] Zhang X, Xia J, Zhou Y, Liu X, Zhang H and Ezawa M 2017 Nat. Commun. 8 845 [9] Hou Z, Zhang Q, Zhang X, et al. 2020 Adv. Mater. 32 1904815 [10] Psaroudaki C and Panagopoulos C 2021 Phys. Rev. Lett. 127 067201 [11] Neto J F and de Souza Silva C C 2022 Phys. Rev. Lett. 128 057001 [12] Xia J, Zhang X, Liu X, Zhou Y and Ezawa M 2022 arXiv preprint arXiv:2204.04589 [13] Saraga D S and Loss D 2003 Phys. Rev. Lett. 90 166803 [14] Weymann I, Bulka B and BarnaŚ J 2011 Phys. Rev. B 83 195302 [15] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126 [16] Liu Y M, Wang Y D and Wei J H 2022 Chin. Phys. B 31 057201 [17] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B 86 115312 [18] Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S and Oliver W D 2020 Annual Review of Condensed Matter Physics 11 369 [19] Veldhorst M, Hwang J, Yang C, et al. 2014 Nat. Nanotech. 9 981 [20] Wang Y, Zhu Z, Wei J and Yan Y 2020 Europhys. Lett. 130 17003 [21] Luczak J and Bulka B R 2017 Quantum Information Processing 16 1 [22] Gimenez I P, Hsieh C Y, Korkusinski M and Hawrylak P 2009 Phys. Rev. B 79 205311 [23] Li Z, Tong N, Zheng X, Hou D, Wei J, Hu J and Yan Y 2012 Phys. Rev. Lett. 109 266403 [24] Hou D, Wang R, Zheng X, Tong N, Wei J and Yan Y 2014 Phys. Rev. B 90 045141 [25] Scarola V and Sarma S D 2005 Phys. Rev. A 71 032340 [26] MacDonald A H, Girvin S and Yoshioka D T 1988 Phys. Rev. B 37 9753 [27] Cheng Y, Wang Y, Wei J, Zhu Z and Yan Y 2017 Phys. Rev. B 95 155417 [28] Byers N and Yang C 1961 Phys. Rev. Lett. 7 46 [29] Lai C Y, Di Ventra M, Scheibner M and Chien C C 2018 Europhys. Lett. 123 47002 [30] Jin J, Zheng X and Yan Y 2008 The Journal of Chemical Physics 128 234703 [31] Li Z, Cheng Y, Wei J, Zheng X and Yan Y 2018 Phys. Rev. B 98 115133 [32] Chen Z H, Wang Y, Zheng X, Xu R X and Yan Y 2022 The Journal of Chemical Physics 157 [33] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [34] Tatara G and Kawamura H 2002 J. Phys. Soc. Jpn. 71 2613 [35] Fujishiro Y, Kanazawa N, Kurihara R, et al. 2021 Nat. Commun. 12 1 [36] Akagi Y and Motome Y 2010 J. Phys. Soc. Jpn. 79 083711 [37] Tatara G 2019 Physica E 106 208 [38] Taguchi K and Tatara G 2009 Phys. Rev. B 79 054423 [39] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [40] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B 77 165103 [41] Ishizuka H and Nagaosa N 2021 Phys. Rev. B 103 235148 [42] Yao X, Chen J and Dong S 2020 New J. Phys. 22 083032 [43] Huang J and Wang W Z 2018 Chin. Phys. B 27 117303 [44] Xiong Y C, Zhou W H and Zhang J 2017 Journal of Low Temperature Physics 187 298 [45] Tooski S, Ramśak A and Bulka 2016 Physica E 75 345 [46] Bonča J, et al. 2008 Phys. Rev. B 77 245112 [47] Zhang S S, Ishizuka H, Zhang H, Halász G B and Batista C D 2020 Phys. Rev. B 101 024420 [48] Koga M, Matsumoto M and Kusunose H 2014 J. Phys. Soc. Jpn. 83 084707 [49] Denisov K 2020 J. Phys.: Condens. Matter 32 415302 [50] Metalidis G and Bruno P 2006 Phys. Rev. B 74 045327 [51] Noiri A, Kawasaki K, Otsuka T, et al. 2017 Semiconductor Science and Technology 32 084004 [52] Lee P A 2007 Handbook of High-Temperature Superconductivity (Springer) pp. 527-568 [53] Kehrein S K and Mielke A 1996 Annals of Physics 252 1 [54] Feynman R P and Jr F V 1987 Annals of Physics 281 547 [55] Li Z H, Tong N, Zheng X, Hou D, Wei J, Hu J and Yan Y 2009 Phys. Rev. Lett. 109 266403 [56] Ye L Z, Wang X, Hou D, Xu R X, Zheng X and Yan Y 2011 Wiley Interdisciplinary Reviews Computational Molecular Science 133 101106 [57] Cheng Y X, Wang Y D, Wei J H, Luo H G and Lin H Q 2019 J. Phys.: Condens. Matter 31 155302 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|