Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098103    DOI: 10.1088/1674-1056/acb491
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers

Xiang-Bin Su(苏向斌)1,2,3, Fu-Hui Shao(邵福会)1,2,3, Hui-Ming Hao(郝慧明)1,2,3, Han-Qing Liu(刘汗青)1,2,3, Shu-Lun Li(李叔伦)1,2,3, De-Yan Dai(戴德炎)1,2,3, Xiang-Jun Shang(尚向军)1,2,3, Tian-Fang Wang(王天放)1,2,3, Yu Zhang(张宇)1,2,3, Cheng-Ao Yang(杨成奥)1,2,3, Ying-Qiang Xu(徐应强)1,2,3, Hai-Qiao Ni(倪海桥)1,2,3, Ying Ding(丁颖)4, and Zhi-Chuan Niu(牛智川)1,2,3,†
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
Abstract  Here we report 1.3 upmu m electrical injection lasers based on InAs/GaAs quantum dots (QDs) grown on a GaAs substrate, which can steadily work at 110 ℃ without visible degradation. The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy. The density of InAs QDs in the active region is increased from 3.8×1010 cm-2 to 5.9×1010 cm-2. As regards laser performance, the maximum output power of devices with low-density QDs as the active region is 65 mW at room temperature, and that of devices with the high-density QDs is 103 mW. Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110 ℃.
Keywords:  InAs/GaAs quantum dots      high-operating-temperature laser      molecular beam epitaxy (MBE)  
Received:  11 October 2022      Revised:  19 December 2022      Accepted manuscript online:  19 January 2023
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Ta (Quantum dots)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  81.70.-q (Methods of materials testing and analysis)  
Fund: Project supported by the Science and Technology Program of Guangzhou (Grant No. 202103030001), the KeyArea Research and Development Program of Guangdong Province (Grant No. 2018B030329001), the National Natural Science Foundation of China (Grant Nos. 62035017, 61505196, and 62204238), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170032), the Major Program of the National Natural Science Foundation of China (Grant Nos. 61790580 and 61790581), the Chinese Academy of Sciences and Changchun City Science and Technology Innovation Cooperation Project (Grant No. 21SH06), Jincheng Key Research and Development Project (Grant No. 20210209), the Key R&D Program of Shanxi Province (Grant No. 202102030201004), the R&D Program of Guangdong Province (Grant Nos. 2018B030329001 and 2020B0303020001), Shenzhen Technology Research Project (Grant No. JSGG20201102145200001), and the National Key Technologies R&D Program of China (Grant No. 2018YFA0306100).
Corresponding Authors:  Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川) High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers 2023 Chin. Phys. B 32 098103

[1] Fuchs C, Brüggemann, A, Weseloh M J, et al. 2018 Sci. Rep. 8 1422
[2] Maximov M V, Kryzhanovskaya N V, Nadtochiy A M, et al. 2014 Nanoscale Res. Lett. 9 657
[3] Akahane K, Yamamoto N and Kawanishi T 2010 IEEE Photon. Technol. Lett. 22 103
[4] Jin C Y, Liu H Y, Badcock T J, Groom, et al. 2006 IEE Proc. Optoelectronics 153 280
[5] Kageyama T, Takada K, Nishi K, Yamaguchi M, et al. 2012 Proceedings of SPIE-The International Society for Optical Engineering 8 8277
[6] Gerschutz F, Fischer M, Koeth J and Chacinski M 2006 Electron. Lett. 42 1457
[7] Gerschütz F, Fischer M, Koeth J, et al. 2008 Opt. Exp. 16 5596
[8] Guimard D, Ishida M, Li L, et al. 2009 Appl. Phys. Lett. 94 939
[9] Rajesh M, Bordel D, Kawaguchi K, et al. 2011 J. Cryst. Growth. 315 114
[10] Li T H, Wang Q, Guo X, et al. 2012 Phys. E 44 1146
[11] Liu H, Wang Q, Chen J, Liu K and Ren X M. 2016 J. Cryst. Growth. 455 168
[12] Huang S S, Niu Z C, Zhan F, Ni H Q, Zhao H, Wu D H and Sun Z 2008 Chin. Phys. B 17 323
[13] Yue L, Gong Q, Cao C F, et al. 2013 Chin. Opt. Lett. 11 061401
[14] Hao H M, Su X B, Zhang J, et al. 2019 Chin. Phys. B 28 078104
[15] Yamaguchi K, Yujobo K and Kaizu T 2000 Jpn. J. Appl. Phys. 39 12458
[16] Nishi K, Saito H, Sugou S and Lee J S 1999 Appl. Phys. Lett. 74 1111
[17] Konishi T, Clarke E, Burrows C W, Bomphrey J J, Murray R and Bell G R 2017 Sci. Rep. 7 42606
[18] Liu W S 2013 J. Alloys Compd. 571 153
[19] Henini M 1996 III-Vs Review 9 32
[20] Su X B, Ding Y, Ma B, et al. 2018 Nanoscale Res. Lett. 13 59
[21] Ning L, Peng J and Zhan-Guo W 2012 Chin. Phys. B 21 408
[22] Chen Z S, Ma B, Shang X J, et al. 2016 Nanoscale Res. Lett. 11 382
[23] Yu Y, Li M F, He J F, et al. 2012 Nanotechnology 23 065706
[24] Chen Z S, Ma B, Shang X J, et al. 2017 Nanoscale Res. Lett. 12 378
[25] Shao Y, Zhang X, Su H, Hao J, et al. 2018 The 3$rd International Conference on Photonics and Optical Engineering 1105212
[1] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[2] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[5] Superconductivity of bilayer titanium/indium thin film grown on SiO2/Si (001)
Zhao-Hong Mo(莫钊洪), Chao Lu(路超), Yi Liu(刘毅), Wei Feng(冯卫), Yun Zhang(张云), Wen Zhang(张文), Shi-Yong Tan(谭世勇), Hong-Jun Zhang(张宏俊), Chun-Yu Guo(郭春煜), Xiao-Dong Wang(汪小冬), Liang Wang(王亮), Rui-Zhu Yang(杨蕊竹), Zhong-Guo Ren(任忠国), Xie-Gang Zhu(朱燮刚), Zhong-Hua Xiong(熊忠华), Qi An(安琪), Xin-Chun Lai(赖新春). Chin. Phys. B, 2018, 27(6): 067403.
[6] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[7] Photoluminescence and lasing properties of InAs/GaAs quantum dots grown by metal-organic chemical vapour deposition
Liang Song (梁 松), Zhu Hong-Liang (朱洪亮), Pan Jiao-Qing (潘教青), Zhao Ling-Juan (赵玲娟), Wang Lu-Feng (王鲁峰), Zhou Fan (周 帆), Shu Hui-Yun (舒惠云), Bian Jing (边 静), An Xin (安 欣), Wang Wei (王 圩). Chin. Phys. B, 2008, 17(11): 4300-4304.
[8] A bistable, self-latching inverter by the monolithic integration of resonant tunnelling diode and high electron mobility transistor
Ma Long(马龙), Huang Ying-Long(黄应龙), Zhang Yang(张杨), Yang Fu-Hua(杨富华), and Wang Liang-Chen(王良臣). Chin. Phys. B, 2006, 15(10): 2422-2426.
[9] Atomic hydrogen induced step bunching and fabrication of quantum wire arrays on GaAs (311)A substrate by molecular beam epitaxy
Zhou Da-Yong (周大勇), Lan Qing (澜清), Kong Yun-Chuan (孔云川), Miao Zhen-Hua (苗振华), Feng Song-Lin (封松林), Niu Zhi-Chuan (牛智川). Chin. Phys. B, 2003, 12(2): 218-221.
No Suggested Reading articles found!