Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118503    DOI: 10.1088/1674-1056/acec44
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

A fast-response self-powered UV-Vis-NIR broadband photodetector based on a AgIn5Se8/t-Se heterojunction

Kang Li(李康), Lei Xu(许磊), Qidong Lu(陆启东), and Peng Hu(胡鹏)
School of Physics, Northwest University, Xi'an 710127, China
Abstract  A type II p-n heterojunction could improve the photodetection performance of a photodetector due to the excellent ability of carrier separation. N-type AgIn5Se8 (AIS) exhibits a large optical absorption coefficient, high optical conductivity and a suitable bandgap, and shows potential application in broadband photodetection. Even though our previous study on AgIn5Se8/FePSe3 obtained a good response speed, it still gave low responsivity due to the poor quality of the p-type FePSe3 thin film. Se, with a direct bandgap (around 1.7 eV), p-type conductivity, high electron mobility and high carrier density, is likely to form a low-dimensional structure, which leads to an increase in the effective contact area of the heterojunction and further improves the photodetector performance. In this work, continuous and dense t-Se thin film was prepared by electrochemical deposition. The self-powered AgIn5Se8/t-Se heterojunction photodetector exhibited a broadband detection range from 365 nm to 1200 nm. The responsivity and detectivity of the heterojunction photodetector were 32 μ A/W and 1.8× 109 Jones, respectively, which are around 9 and 4 times higher than those of the AgIn5Se8/FePSe3 heterojunction photodetector. The main reason for this is the good quality of the t-Se thin film and the formation of the low-dimensional t-Se nanoribbons, which optimized the transport pathway of carriers. The results indicate that the AgIn5Se8/t-Se heterojunction is an excellent candidate for broadband and self-powered photoelectronic devices.
Keywords:  AgIn5Se8/t-Se heterojunction      self-power broadband photodetector  
Received:  14 June 2023      Revised:  25 July 2023      Accepted manuscript online:  01 August 2023
PACS:  85.30.-z (Semiconductor devices)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.61.Le (Other inorganic semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51803168), the Key Research and Development Program of Shaanxi Province (Grant No. 2022GY-356), and the Youth Innovation Team of Shaanxi Universities.
Corresponding Authors:  Peng Hu     E-mail:  hupeng@nwu.edu.cn

Cite this article: 

Kang Li(李康), Lei Xu(许磊), Qidong Lu(陆启东), and Peng Hu(胡鹏) A fast-response self-powered UV-Vis-NIR broadband photodetector based on a AgIn5Se8/t-Se heterojunction 2023 Chin. Phys. B 32 118503

[1] Jack W J 2001 Smart Mater. Struct. 10 1115
[2] Simone G, Di Carlo Rasi D, de Vries X, Heintges G H L, Meskers S C J, Janssen R A J and Gelinck G H 2018 Adv. Mater. 30 1804678
[3] Wang Q, Zhang Y and Wei Z 2023 Chin. J. Chem. 41 958
[4] Bao C, Yang J, Bai S, Xu W, Yan Z, Xu Q, Liu J, Zhang W and Gao F 2018 Adv. Mater. 30 1803422
[5] Qiu Q and Huang Z 2021 Adv. Mater. 33 e2008126
[6] Long M, Wang P, Fang H and Hu W 2018 Adv. Funct. Mater. 29 1803807
[7] Qiao H, Huang Z, Ren X, Liu S, Zhang Y, Qi X and Zhang H 2019 Adv. Opt. Mater. 8 1900765
[8] Wang H and Kim D H 2017 Chem. Soc. Rev. 46 5204
[9] Jin Z, Hu C, Lan Y, Cao Y, Deng H, Yang X, Wang J and Song H 2020 Adv. Opt. Mater. 8 2001319
[10] Wang C, Zhang X and Hu W 2020 Chem. Soc. Rev. 49 653
[11] Fang H, Zheng C, Wu L, Li Y, Cai J, Hu M, Fang X, Ma R, Wang Q and Wang H 2019 Adv. Funct. Mater. 29 1809013
[12] Jokar E, Cai L, Han J, Nacpil E J C and Jeon I 2023 Chem. Mater. 35 3404
[13] Xu H, Liu J, Zhang J, Zhou G, Luo N and Zhao N 2017 Adv. Mater. 29 1700975
[14] Cho Y, Jung H R and Jo W 2022 Nanoscale 14 9248
[15] Wang W, Zhao D, Zhang F, Li L, Du M, Wang C, Yu Y, Huang Q, Zhang M, Li L, Miao J, Lou Z, Shen G, Fang Y and Yan Y 2017 Adv. Funct. Mater. 27 1703953
[16] Dang Z, Wang W, Chen J, Walker E S, Bank S R, Akinwande D, Ni Z and Tao L 2021 2$D Mater. 8 035002
[17] Wu S, Chen Y, Wang X, Jiao H, Zhao Q, Huang X, Tai X, Zhou Y, Chen H, Wang X, Huang S, Yan H, Lin T, Shen H, Hu W, Meng X, Chu J and Wang J 2022 Nat. Commun. 13 3198
[18] Yu P, Hu K, Chen H, Zheng L and Fang X 2017 Adv. Funct. Mater. 27 1703166
[19] Zhu T, Su J, Alvarez J, Lefévre G, Labat F, Ciofini I and Pauporté T 2019 Adv. Funct. Mater. 29 1903981
[20] Shen T L, Chu Y W, Liao Y K, Lee W Y, Kuo H C, Lin T Y and Chen Y F 2020 Adv. Opt. Mater. 8 1901334
[21] Chen H, Yu P, Zhang Z, Teng F, Zheng L, Hu K and Fang X 2016 Small 12 5809
[22] Yang D, Du F, Ren Y, Kang T, Hu P, Teng F and Fan H 2021 J. Mater. Chem. C 9 14146
[23] Jiao H, Wang X, Wu S, Chen Y, Chu J and Wang J 2023 Appl. Phys. Rev. 10 011310
[24] Zhou X, Li N and Lu W 2019 Chin. Phys. B 28 027801
[25] Jenekhe S A 1986 Nature 322 345
[26] Wu L and Yang Y 2022 Adv. Mater. Interfaces 9 2201415
[27] Wu Y, Qiu L, Liu J, Guan M, Dai Z and Li G 2022 Adv. Opt. Mater. 10 2102661
[28] Yu X, Li Y, Hu X, Zhang D, Tao Y, Liu Z, He Y, Haque M A, Liu Z, Wu T and Wang Q J 2018 Nat. Commun. 9 4299
[29] Shen X, Wang G, Li S, Yang C C, Tan H, Zhang Y, Lu X, He J, Wang G and Zhou X 2019 J. Alloys Compds. 805 444
[30] Song S, Liang Z, Fu W and Peng T 2017 ACS Appl. Mater. Interfaces 9 17013
[31] Begum Y, Khan S, Reshak A H, Laref A, Amir Z, Murtaza G, Bila J, Johan M R and Al-Noor T H 2021 Int. J. Energy Res. 45 4014
[32] Qasrawi A F 2008 J. Alloys Compd. 455 295
[33] Matsumoto R, Hou Z, Hara H, Adachi S, Tanaka H, Yamamoto S, Saito Y, Takeya H, Irifune T, Terakura K and Takano Y 2020 Inorg. Chem. 59 325
[34] Makhova L V, Konovalov I and Szargan R 2004 Phys. Status Solidi A 201 308
[35] Gasanly N M 2016 Infrared Phys. Technol. 75 168
[36] Lu Q, Xu L, Ren Y, Gao J, Chen Y, Song J, Fan H, Teng F, He X and Hu P 2022 ACS Appl. Electron. Mater. 4 5284
[37] Benoit P, Djega-Mariadassou C, Lesueur R and Albany J H 1979 Phys. Lett. A 73 55
[38] Shen X, Zhang B, Chen Q, Tan H, Zhang X, Wang G, Lu X and Zhou X 2019 Inorg. Chem. Front. 6 3545
[39] Liang J W, Firdaus Y, Kang C H, Min J W, Min J H, Al Ibrahim R H, Wehbe N, Hedhili M N, Kaltsas D, Tsetseris L, Lopatin S, Zheng S, Ng T K, Anthopoulos T D and Ooi B S 2022 ACS Appl. Mater. Interfaces 14 17889
[40] Luo L B, Yang X B, Liang F X, Jie J S, Li Q, Zhu Z F, Wu C Y, Yu Y Q and Wang L 2012 CrystEngComm 14 1942
[41] Gates B, Mayers B, Cattle B and Xia Y 2002 Adv. Funct. Mater. 12 219
[42] Chang Y, Huang L, Zhou Y, Wang J and Zhai W 2022 ACS Appl. Mater. Interfaces 14 5624
[43] Bube R H 2016 Adv. Funct. Mater. 26 6641
[45] Liu P, Ma Y, Cai W, Wang Z, Wang J, Qi L and Chen D 2007 Nanotechnology 18 205704
[46] Wang Y, Zhang A, Shao Z, Yu H, Xu Y, Liu X, Cui M, Gao F, Hu P and Feng W 2022 Adv. Opt. Mater. 10 2201926
[47] Hu K, Teng F, Zheng L, Yu P, Zhang Z, Chen H and Fang X 2017 Laser Photonics Rev. 11 1600257
[48] Seyedmahmoudbaraghani S, Yu S, Lim J and Myung N V 2020 Front. Chem. 8 785
[49] Chang Y, Zhou Y, Wang J and Zhai W 2022 Small 18 e2201714
[50] Huang H, Ma C, Zhu Z, Yao X, Liu Y, Liu Z, Li C and Yan Y 2018 Chem. Eng. J. 338 218
[51] Zhang J, Fu Q, Xue Y and Cui Z 2018 CrystEngComm 20 1220
[52] Zeng L H, Wu D, Lin S H, Xie C, Yuan H Y, Lu W, Lau S P, Chai Y, Luo L B, Li Z J and Tsang Y H 2019 Adv. Funct. Mater. 29 1806878
[53] Cao B, Liu Q, Zheng Y, Tang X, Chai J, Ma S, Wang W and Li G 2022 Adv. Funct. Mater. 32 2110715
[1] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
[2] β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings
Qiming He(何启鸣), Weibing Hao(郝伟兵), Qiuyan Li(李秋艳), Zhao Han(韩照), Song He(贺松),Qi Liu(刘琦), Xuanze Zhou(周选择), Guangwei Xu(徐光伟), and Shibing Long(龙世兵). Chin. Phys. B, 2023, 32(12): 128507.
[3] Si-Ge based vertical tunnel field-effect transistor of junction-less structure with improved sensitivity using dielectric modulation for biosensing applications
Lucky Agarwal, Varun Mishra, Ravi Prakash Dwivedi, Vishal Goyal, and Shweta Tripathi. Chin. Phys. B, 2023, 32(12): 128701.
[4] Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
Dun-Zhou Xu(许敦洲), Peng Jin(金鹏), Peng-Fei Xu(徐鹏飞), Meng-Yang Feng(冯梦阳), Ju Wu(吴巨), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2023, 32(10): 108504.
[5] Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(5): 058501.
[6] Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms
Wen-Hao Zhang(张文浩), Ma-Guang Zhu(朱马光), Kang-Hua Yu(余康华), Cheng-Zhan Li(李诚瞻),Jun Wang(王俊), Li Xiang(向立), and Yu-Wei Wang(王雨薇). Chin. Phys. B, 2023, 32(5): 057305.
[7] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[8] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[9] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[10] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[11] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[12] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[13] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[14] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[15] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
No Suggested Reading articles found!