Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128507    DOI: 10.1088/1674-1056/accf69
Special Issue: SPECIAL TOPIC—Post-Moore era: Materials and device physics
SPECIAL TOPIC—Post-Moore era: Materials and device physics Prev   Next  

β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings

Qiming He(何启鸣)1,2, Weibing Hao(郝伟兵)2, Qiuyan Li(李秋艳)2, Zhao Han(韩照)2, Song He(贺松)2, Qi Liu(刘琦)2, Xuanze Zhou(周选择)2, Guangwei Xu(徐光伟)2, and Shibing Long(龙世兵)2,†
1 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
2 School of Microelectronics, University of Science and Technology, Hefei 230026, China
Abstract  Recently, β-Ga2O3, an ultra-wide bandgap semiconductor, has shown great potential to be used in power devices blessed with its unique material properties. For instance, the measured average critical field of the vertical Schottky barrier diode (SBD) based on β-Ga2O3 has reached 5.45 MV/cm, and no device in any material has measured a greater before. However, the high electric field of the β-Ga2O3 SBD makes it challenging to manage the electric field distribution and leakage current. Here, we show β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings (FFRs). For the central anode, we filled a circular trench array with NiO to reduce the surface field under the Schottky contact between them to reduce the leakage current of the device. For the anode edge, experimental results have demonstrated that the produced NiO/β-Ga2O3 heterojunction FFRs enable the spreading of the depletion region, thereby mitigating the crowding effect of electric fields at the anode edge. Additionally, simulation results indicated that the p-NiO field plate structure designed at the edges of the rings and central anode can further reduce the electric field. This work verified the feasibility of the heterojunction FFRs in β-Ga2O3 devices based on the experimental findings and provided ideas for managing the electric field of β-Ga2O3 SBD.
Keywords:  gallium oxide      Schottky barrier diode      nickel oxide      floating field rings  
Received:  22 March 2023      Revised:  20 April 2023      Accepted manuscript online:  22 April 2023
PACS:  85.30.-z (Semiconductor devices)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  85.30.Kk (Junction diodes)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61925110, U20A20207, 62004184, 62004186, and 62234007), the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B010174002), the funding support from University of Science and Technology of China (USTC) (Grant Nos.YD2100002009 and YD2100002010), the Fundamental Research Plan (Grant No.JCKY2020110B010), Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences (Grant No.2022HSC-CIP024), and the Opening Project of and the Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano-Tech and Nano-Bionics of CAS. This work was partially carried out at the Center for Micro and Nanoscale Research and Fabrication of USTC. The author would like to express gratitude to those who assisted and encouraged during research work, with special appreciation to Prof. Xiaojun Wu and Prof. Liu Ming.
Corresponding Authors:  Shibing Long     E-mail:  shibinglong@ustc.edu.cn

Cite this article: 

Qiming He(何启鸣), Weibing Hao(郝伟兵), Qiuyan Li(李秋艳), Zhao Han(韩照), Song He(贺松),Qi Liu(刘琦), Xuanze Zhou(周选择), Guangwei Xu(徐光伟), and Shibing Long(龙世兵) β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings 2023 Chin. Phys. B 32 128507

[1] Reese S B, Remo T, Green J and Zakutayev A 2019 Joule 3 903
[2] Pearton S J, Yang J, IV P H C, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[3] Tsao J Y, Chowdhury S, Hollis M A, et al. 2018 Adv. Electron. Mater. 4 1600501
[4] Higashiwaki M 2021 Phys. Status Solidi-R 15 2100357
[5] Green A J, Speck J, Xing G, et al. 2022 APL Mater. 10 029201
[6] Thieu Q T, Sasaki K and Kuramata A 2023 Jpn. J. Appl. Phys. 62 SF1009
[7] He Q, Zhou X, Li Q, Hao W, Liu Q, Han Z, Zhou K, Chen C, Peng J, Xu G, Zhao X, Wu X and Long S 2022 IEEE Electron Device Lett. 43 1933
[8] Roy S, Bhattacharyya A, Ranga P, Splawn H, Leach J and Krishnamoorthy S 2021 IEEE Electron Device Lett. 42 1140
[9] Allen N, Xiao M, Yan X, Sasaki K, Tadjer M J, Ma J, Zhang R, Wang H and Zhang Y 2019 IEEE Electron Device Lett. 40 1399
[10] Kumar S, Murakami H, Kumagai Y and Higashiwaki M 2022 Appl. Phys. Express 15 054001
[11] Dong P, Zhang J, Yan Q, Liu Z, Ma P, Zhou H and Hao Y 2022 IEEE Electron Device Lett. 43 765
[12] Wang Y, Lv Y, Long S, Zhou X, Song X, Liang S, Han T, Tan X, Feng Z, Cai S and Liu M 2020 IEEE Electron Device Lett. 41 131
[13] Zhou H, Yan Q, Zhang J, Lv Y, Liu Z, Zhang Y, Dang K, Dong P, Feng Z, Feng Q, Ning J, Zhang C, Ma P and Hao Y 2019 IEEE Electron Device Lett. 40 1788
[14] Lu X, Zhang X, Jiang H, Zou X, Lau K M and Wang G 2020 Phys. Status Solidi A 217 1900497
[15] Gao Y, Li A, Feng Q, Hu Z, Feng Z, Zhang K, Lu X, Zhang C, Zhou H, Mu W, Jia Z, Zhang J and Hao Y 2019 Nanoscale Res. Lett. 14 8
[16] Xia X, Xian M, Fares C, Sharma R, Law M E, Ren F and Pearton S J 2021 J. Vac. Sci. Technol. A 39 063405
[17] Lin C H, Yuda Y, Wong M H, Sato M, Takekawa N, Konishi K, Watahiki T, Yamamuka M, Murakami H, Kumagai Y and Higashiwaki M 2019 IEEE Electron Device Lett. 40 1487
[18] Roy S, Bhattacharyya A and Krishnamoorthy S 2020 IEEE Trans. Electron Devices 67 4842
[19] Xiong W, Zhou X, Xu G, He Q, Jian G, Chen C, Yu Y, Hao W, Xiang X, Zhao X, Mu W, Jia Z, Tao X and Long S 2021 IEEE Electron Device Lett. 42 430
[20] Chen H, Wang H and Sheng K 2023 IEEE Electron Device Lett. 44 21
[21] Dhara S, Kalarickal N K, Dheenan A, Joishi C and Rajan S 2022 Appl. Phys. Lett. 121 203501
[22] Hu Z, Lv Y, Zhao C, Feng Q, Feng Z, Dang K, Tian X, Zhang Y, Ning J, Zhou H, Kang X, Zhang J and Hao Y 2020 IEEE Electron Device Lett. 41 441
[23] Wang Y, Gong H, Lv Y, Fu X, Dun S, Han T, Liu H, Zhou X, Liang S, Ye J, Zhang R, Bu A, Cai S and Feng Z 2022 IEEE T. Power Electr. 37 3743
[24] Hao W, Wu F, Li W, Xu G, Xie X, Zhou K, Guo W, Zhou X, He Q, Zhao X, Yang S and Long S 2022 International Electron Devices Meeting (IEDM), December 3--7, 2022, San Francisco, California, United States, p. 9.5.1
[25] Wang B, Xiao M, Spencer J, Qin Y, Sasaki K, Tadjer M J and Zhang Y 2023 IEEE Electron Device Lett. 44 221
[26] Yan Q, Gong H, Zhou H, Zhang J, Ye J, Liu Z, Wang C, Zheng X, Zhang R and Hao Y 2022 Appl. Phys. Lett. 120 092106
[27] Sharma R, Xian M, Law M E, Tadjer M, Ren F and Pearton S J 2020 J. Vac. Sci. Technol. A 38 063414
[28] Gong H H, Yu X X, Xu Y, Chen X H, Kuang Y, Lv Y J, Yang Y, Ren F F, Feng Z H, Gu S L, Zheng Y D, Zhang R and Ye J D 2021 Appl. Phys. Lett. 118 202102
[29] Hu Z, Zhao C, Feng Q, Feng Z, Jia Z, Lian X, Lai Z, Zhang C, Zhou H, Zhang J and Hao Y 2020 ECS J. Solid State Sci. Technol. 9 025001
[30] Li W, Nomoto K, Hu Z, Jena D and Xing H G 2020 IEEE Electron Device Lett. 41 107
[31] Li W, Nomoto K, Hu Z, Jena D and Xing H G 2020 IEEE Trans. Electron Devices 67 3938
[32] Sasaki K, Wakimoto D, Thieu Q T, Koishikawa Y, Kuramata A, Higashiwaki M and Yamakoshi S 2017 IEEE Electron Device Lett. 38 783
[33] Yan Q, Gong H, Zhang J, Ye J, Zhou H, Liu Z, Xu S, Wang C, Hu Z, Feng Q, Ning J, Zhang C, Ma P, Zhang R and Hao Y 2021 Appl. Phys. Lett. 118 122102
[34] Lv Y, Wang Y, Fu X, Dun S, Sun Z, Liu H, Zhou X, Song X, Dang K, Liang S, Zhang J, Zhou H, Feng Z, Cai S and Hao Y 2021 IEEE T. Power Electr. 36 6179
[35] Sasaki K, Yamakoshi S and Kuramata A 2019 Proc. SPIE, February 2--7, 2019, San Francisco, California, United States, p. 1091913
[36] Kokubun Y, Kubo S and Nakagomi S 2016 Appl. Phys. Express 9 091101
[37] Gong H H, Chen X H, Xu Y, Ren F F, Gu S L and Ye J D 2020 Appl. Phys. Lett. 117 022104
[38] Lu X, Zhou X, Jiang H, Ng K W, Chen Z, Pei Y, Lau K M and Wang G 2020 IEEE Electron Device Lett. 41 449
[39] Hao W, He Q, Zhou K, Xu G, Xiong W, Zhou X, Jian G, Chen C, Zhao X and Long S 2021 Appl. Phys. Lett. 118 043501
[40] Li J S, Chiang C C, Xia X, Yoo T J, Ren F, Kim H and Pearton S J 2022 Appl. Phys. Lett. 121 042105
[41] Deng Y, Yang Z, Xu T, Jiang H, Ng K W, Liao C, Su D, Pei Y, Chen Z, Wang G and Lu X 2023 Appl. Surf. Sci. 622 156917
[42] Baliga B J 1984 IEEE Electron Device Lett. 5 194
[43] Baliga B J 1990 Solid State Electron. 33 485
[44] Zhou F, Gong H H, Wang Z P, Xu W Z, Yu X X, Yang Y, Ren F F, Gu S L, Zhang R, Zheng Y D, Lu H and Ye J D 2021 Appl. Phys. Lett. 119 262103
[45] Zhou F, Gong H, Xu W, Yu X, Xu Y, Yang Y, Ren F f, Gu S, Zheng Y, Zhang R, Ye J and Lu H 2022 IEEE T. Power Electr. 37 1223
[46] Mehrotra M and Baliga B J 1995 Solid State Electron. 38 801
[47] Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D and Xing H G 2017 IEEE Trans. Electron Devices 64 1635
[1] High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure
Ying Zhu(朱盈), Wang Lin(林旺), Dong-Shuai Li(李东帅), Liu-An Li(李柳暗), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2023, 32(8): 088101.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[6] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[7] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[8] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[9] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[10] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[11] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[12] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[13] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[14] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[15] Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies
Yan-Fang Zhang(张彦芳), Xuan-Hu Chen(陈选虎), Yang Xu(徐阳), Fang-Fang Ren(任芳芳), Shu-Lin Gu(顾书林), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东). Chin. Phys. B, 2019, 28(2): 028501.
No Suggested Reading articles found!