Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 058504    DOI: 10.1088/1674-1056/acbd2d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode

Kaizhe Jiang(蒋铠哲)1, Xiaodong Zhang(张孝冬)1,†, Chuan Tian(田川)2, Shengrong Zhang(张升荣)3, Liqiang Zheng(郑理强)1, Rongzhao He(赫荣钊)1, and Chong Shen(沈重)1,‡
1 State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
2 Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
3 Sansha Guohaixintong Technology Development Co., Ltd, Haikou 570100, China
Abstract  A new SiC asymmetric cell trench metal--oxide--semiconductor field effect transistor (MOSFET) with a split gate (SG) and integrated p$^{+}$-poly Si/SiC heterojunction freewheeling diode (SGHJD-TMOS) is investigated in this article. The SG structure of the SGHJD-TMOS structure can effectively reduce the gate-drain capacitance and reduce the high gate-oxide electric field. The integrated p$^{+}$-poly Si/SiC heterojunction freewheeling diode substantially improves body diode characteristics and reduces switching losses without degrading the static characteristics of the device. Numerical analysis results show that, compared with the conventional asymmetric cell trench MOSFET (CA-TMOS), the high-frequency figure of merit (HF-FOM, $R_{\rm on,sp}\times Q_{\rm gd,sp}$) is reduced by 92.5%, and the gate-oxide electric field is reduced by 75%. In addition, the forward conduction voltage drop ($V_{\rm F}$) and gate-drain charge ($Q_{\rm gd}$) are reduced from 2.90 V and 63.5 μC/cm$^{2}$ in the CA-TMOS to 1.80 V and 26.1 μC/cm$^{2}$ in the SGHJD-TMOS, respectively. Compared with the CA-TMOS, the turn-on loss ($E_{\rm on}$) and turn-off loss ($E_{\rm off}$) of the SGHJD-TMOS are reduced by 21.1% and 12.2%, respectively.
Keywords:  split gate (SG)      heterojunction freewheeling diode (HJD)      SiC asymmetric cell trench MOSFET      turn-on loss      turn-off loss  
Received:  24 November 2022      Revised:  06 January 2023      Accepted manuscript online:  20 February 2023
PACS:  85.30.-z (Semiconductor devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by Major Science and Technology Projects of Hainan Province, China (Grant Nos. ZDKJ2021023 and ZDKJ2021042) and Hainan Provincial Natural Science Foundation of China (Grant Nos. 622QN285 and 521QN210).
Corresponding Authors:  Xiaodong Zhang, Chong Shen     E-mail:  zhangxiaodong@hainanu.edu.cn;chongshen@hainanu.edu.cn

Cite this article: 

Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重) A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode 2023 Chin. Phys. B 32 058504

[1] Cooper J A, Jr, Melloch M R, Singh R, Agarwal A and Palmour J W 2002 IEEE Trans. Electron Dev. 49 658
[2] Deng X C, Li L J, Wu J, Li C Z, Chen W J, Li J T, Li Z J and Zhang B 2017 IEEE Trans. Electron Dev. 64 5042
[3] Shen P, Wang Y, Li X J, Yang J Q, Yu C H and Cao F 2021 Chin. Phys. B 30 058502
[4] Shen P, Wang Y and Cao F 2022 Chin. Phys. B 31 078501
[5] Hu S D, Jin J J, Chen Y H, Jiang Y Y, Cheng K, Zhou J L, Liu J T, Huang R, Yao S J 2015 Chin. Phys. Lett. 32 98502
[6] Duan B, Huang X, Song H, Wang Y and Yang Y 2021 Chin. Phys. B 30 048503
[7] Deng X C, Gao S F, Tan B, Li J T, Li X, Li C Z, Chen W J, Li Z J and Zhang B 2019 IEEE J. Emerg. Sel. Topics Power Electron 7 1505
[8] Shi Y J, Wang L, Xie R, Shi Y X and Li H 2017 IEEE Trans. Ind. Electron 64 9144
[9] She X, Huang A Q, Lucía Ó and Ozpineci B 2017 IEEE Trans. Ind. Electron 64 8193
[10] Fabre J, Ladoux P and Piton M 2015 IEEE Trans. Power Electron 30 4079
[11] Kagawa Y, Fujiwara N, Sugawara K, Tanaka R, Fukui Y, Yamamoto Y, Miura N, Imaizumi M, Nakata S and Yamakawa S 2014 Mater. Sci. Forum 778-780 919
[12] Song Q W, Yang S, Tang G N, Han C, Zhang Y M, Tang X Y, Zhang Y M and Zhang Y M 2016 IEEE Electron Dev. Lett. 37 463
[13] Seok O, Kang I H, Moon J H, Kim H W, Ha M W, Bahng W 2020 Microelectro. Eng. 225 111280
[14] Cheng Y Z, Wang Y, Wu X and Cao F 2020 IEEE Trans. Electron Dev. 67 3298
[15] Yang T T, Wang Y and Yue R F 2020 IEEE Trans. Electron Dev. 67 3685
[16] Tan J, Cooper J A and Melloch M R 1998 IEEE Electron Dev. Lett. 19 487
[17] Wang Y, Tian K, Hao Y, Yu C H and Liu Y J 2015 IEEE Trans. Electron Dev. 62 1
[18] Nakamura T, Nakano Y, Aketa and Yokotsuji Y 2011 in Proc. IEDM, December 05-07, 2011, Washington, DC, USA p. 599
[19] Peters D, Basler T, Zippelius B, Aichinger T, Bergner W, Esteve R, Kueck D and Siemieniec R 2017 in Proc. PCIM, May 16-18, 2017, Nuremberg, Germany p. 1
[20] Ni W J, Wang X L, Xu M L, Wang Q, Feng C, Xiao H L, Jiang L J and Li W 2019 IEEE Electron Dev. Lett. 40 698
[21] Han Z L, Bai Y, Chen H, Li C Z, Lu J, Yang C Y, Yao Y, Tian X L, Tang Y D, Song G and Liu X Y 2020 IEEE Trans. Electron Dev. 68 1
[22] Jiang H P, Wei J, Dai X P, Ke M L, Zheng C W and Deviny L 2016 in Proc. ISPSD, June 12-16, 2016, Prague, Czech Republic p. 59
[23] Wei J, Zhang M, Jiang H P, Zhou X D, Li B K and Chen K J 2019 IEEE Electron Device Lett. 40 1155
[24] Yu H Y, Liang S W, Liu H Z, Wang J and Shen Z J 2021 IEEE Trans. Electron Dev. 68 4571
[25] Yoon J and Kim K 2022 Semicond. Sci. Tech. 37 015014
[26] Yang T T, Wang Y and Yue R F 2020 Superlattice Microst 140 106466
[27] Duan B X, Xue S, Huang X and Yang Y T 2021 IEEE J. Electron Dev. 9 114
[28] Na J and Kim K 2022 International Conference on Electronics, Information, and Communication, February 06-09, 2022, Jeju, Korea p. 1
[29] Zhang X D, Wang Y, Bao M T, Li X J, Yang J Q and Cao F 2021 IEEE Trans. Electron Dev. 68 5062
[30] Peters D, Basler T, Zippelius B, Aichinger T, Bergner W, Esteve R, Kueck D and Siemieniec R 2017 International Exhibition & Conference for Power Electronics VDE, July 27, 2017, Nuremberg, Germany p. 1
[31] Zhang J, Chen Z, Tu Y, Deng X and Zhang B 2021 IEEE J. Electron Dev. 9 713
[32] ATLAS User's Manual: Device Simulation Software, Version 5.16.3.R, Silvaco Int, Santa Clara, CA, USA, 2010
[1] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[2] Superjunction nanoscale partially narrow mesa IGBT towards superior performance
Qiao-Qun Yu(喻巧群), Jiang Lu(陆江), Hai-Nan Liu(刘海南), Jia-Jun Luo(罗家俊), Bo Li(李博), Li-Xin Wang(王立新), Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2017, 26(3): 038502.
No Suggested Reading articles found!