Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057305    DOI: 10.1088/1674-1056/acbd2e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms

Wen-Hao Zhang(张文浩)1,†, Ma-Guang Zhu(朱马光)2,†, Kang-Hua Yu(余康华)3, Cheng-Zhan Li(李诚瞻)4, Jun Wang(王俊)3, Li Xiang(向立)1, and Yu-Wei Wang(王雨薇)3,‡
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2 School of Integrated Circuits, Nanjing University, Suzhou 210008, China;
3 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
4 State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou CRRC Times Semiconductor Co., Ltd., Zhuzhou 412001, China
Abstract  Lateral type n-channel 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs), fabricated using a current industrial process, are irradiated with gamma rays at different irradiation doses in this paper to carry out a profound study on the generation mechanism of radiation-induced interface traps and oxide trapped charges. Electrical parameters (e.g., threshold voltage, subthreshold swing and channel mobility) of the device before and after irradiation are investigated, and the influence of the channel orientation ($[1\overline{1}00]$ and $[11\overline {2} 0]$) on the radiation effect is discussed for the first time. A positive threshold voltage shift is observed at very low irradiation doses ($< 100$ krad (Si)); the threshold voltage then shifts negatively as the dose increases. It is found that the dependence of interface trap generation on the radiation dose is not the same for doses below and above 100 krad. For irradiation $\rm doses < 100 $ krad, the radiation-induced interface traps with relatively high generation speeds dominate the competition with radiation-induced oxide trapped charges, contributing to the positive threshold voltage shift correspondingly. All these results provide additional insight into the radiation-induced charge trapping mechanism in the SiO$_{2}$/SiC interface.
Keywords:  SiC MOSFET      gamma-ray irradiation      interface traps      oxide-trapped charges  
Received:  30 November 2022      Revised:  03 February 2023      Accepted manuscript online:  20 February 2023
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  61.80.Az (Theory and models of radiation effects)  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52107190 and 62101181) and China Postdoctoral Science Foundation (Grant No. 2021M700203).
Corresponding Authors:  Yu-Wei Wang     E-mail:  yuweiwang@hnu.edu.cn

Cite this article: 

Wen-Hao Zhang(张文浩), Ma-Guang Zhu(朱马光), Kang-Hua Yu(余康华), Cheng-Zhan Li(李诚瞻),Jun Wang(王俊), Li Xiang(向立), and Yu-Wei Wang(王雨薇) Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms 2023 Chin. Phys. B 32 057305

[1] Yoshikawa M, Itoh H, Morita Y, Nashiyama I, Misawa S, Okumura H and Yoshida S 1991 J. App. Phys. 70 1309
[2] Li H J, Zhang Y M, Tang X Y, Li D X and Song Q W 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia, May 16-18, 2018, Xi'an, China, p. 156
[3] Ahyi A C, Wang S R and Williams J R 2006 Mater. Sci. Forum. 527-529 1063
[4] Mitomo S, Matsuda T, Murata K, Yokoseki T, Makino T, Takeyama A, Onoda S, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T and Hijikata Y 2017 Phys. Status Solidi A 214 1600425
[5] Yu Q K, Waqas A, Cao S, Wang H, Lv H, Sun Yi, Mo R, Wang Q Y, Mei B, Sun J J, Zhang H W, Tang M, Bai S, Zhang T, Bai Y and Zhang C R 2022 IEEE Trans. Nucl. Sci. 69 1127
[6] Sun Y B, Wan X, Liu Z Y, Jin H, Yan J Z, Li X J and Shi Y L 2022 Radiat. Phys. Chem. 197 110219
[7] Ohshima T, Yoshikawa M, Itoh H, Aoki Y and Nashiyama I 1998 Jpn. J. Appl. Phys. 37 L1002
[8] Fleetwood D M 2020 IEEE Trans. Nucl. Sci. 67 1216
[9] Hu D Q, Zhang J W, Jia Y P, Wu Y, Peng L and Tang Y 2018 IEEE Trans. Electron Devices 65 3719
[10] Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V and Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453
[11] Kimoto T, Kaneko M, Tachiki K, Ito K, Ishikawa R, Chi X, Stefanakis D, Kobayashi T and Tanaka H 2021 IEEE International Electron Devices Meeting, December 11-16, 2021, San Francisco, CA, USA, p. 36.1.1
[12] Cabello M, Soler V, Rius G, Montserrat J, Rebollo J and Godignon P 2018 Mater. Sci. Semiconductor Process. 78 22
[13] Pande P, Haasmann D, Han J, Moghadam H A, Tanner P and Dimitrijev S 2020 Microelectron. Rel. 112 113790
[14] Wang M H, Yang M C, Liu W H, Qi J W, Yang S Q, Han C Y, Geng L and Hao Y 2021 IEEE Trans. Electron Devices 68 1841
[15] Luo Z P, Wan C P, Jin Z and Xu H Y 2021 Semicond. Sci. Tech. 36 045021
[16] Jia Y F, Lv H L, Tang X Y, Han C, Song Q W, Zhang Y M, Zhang Y M, Dimitrijev S, Han J S and Haasmann D 2019 Mater. Electron. 30 10302
[17] Okamoto D, Yano H, Oshiro Y, Hatayama T, Uraoka Y and Fuyuki T 2009 Appl. Phys. Exp. 2 021201
[18] Ohshima T, Yokoseki T, Murata K, Matsuda T, Mitomo S, Abe H, Makino T, Onoda S, Hijikata Y, Tanaka Y, Kandori M, Okubo S and Yoshie T 2016 Jpn. J. Appl. Phys. 55 01AD01
[19] Takeyama A, Makino T, Okubo S, Tanaka Y, Yoshie T, Hijikata Y and Ohshima T 2019 Materials 12 2741
[20] Zhang E X, Zhang C X, Fleetwood D M, Schrimpf R D, Dhar S, Ryu S H, Shen X and Pantelides S T 2012 IEEE Trans. Device Mater. Rel. 12 391
[21] Via F L, Camarda M and Magna A L 2014 Appl. Phys. Rev. 1 031301
[22] Scharnholz S, Stein von Kamienski E, Gölz A, Leonhard C and Kurz H 1998 Mater. Sci. Forum. 264-268 1001
[23] Woerle J, Johnson B, Bongiorno C, Yamasue K, Ferro G, Dutta D, Jung T, Sigg H, Cho Y, Grossner U and Camarda M 2019 Phys. Rev. Mater. 3 084602
[24] Schroder D K 2005 Semiconductor Material and Device Characterization (3rd ed) (Hoboken: Wiley) p. 360
[25] Murata K, Mitomo S, Matsuda T, Yokoseki T, Makino T, Onoda S, Takeyama A, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T and Hijikata Y 2017 Phys. Status Solidi A 214 1600446
[26] Akturk A, McGarrity J M, Potbhare S and Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258
[27] Hjelm M, Bertilsson K and Nilsson H E 2001 Appl. Surf. Sci. 184 194
[28] Saks N S, Ancona M G and Lipkin L A 2004 Mater. Sci. Forum. 457-460 689
[29] Fiorenza P, Giannazzo F, Frazzetto A and Roccaforte F 2012 J. Appl. Phys. 112 084501
[30] Lee K K, Ohshima T, Ohi A, Itoh H and Pensl G 2006 Jpn. J. Appl. Phys. 45 6830
[31] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103
[32] Zhu M G, Xiao H S, Yan G P, Sun P K, Jiang J H, Cui Z, Zhao J W, Zhang Z Y and Peng L M 2020 Nat. Electron. 3 622
[33] Zhu M G, Zhou J S, Sun P K, Peng L M and Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756
[34] Wang X, Zhu M G, Li X Q, Qin Z Z, Lu G H, Zhao J W and Zhang Z Y 2022 Adv. Mater. 34 2204066
[35] Dixit S K, Dhar S, Rozen J, Wang S, Schrimpf R D, Fleetwood D M, Pantelides S T, Williams J R and Feldman L C 2006 IEEE Trans. Nucl. Sci. 53 3687
[36] Knežević T, Hadžipašić A, Ohshima T, Makino T and Capan I 2022 Appl. Phys. Lett. 120 252101
[37] McWhorter P J and Winokur P S 1986 Appl. Phys. Lett. 48 133
[38] Petrosjanc K O and Kharitonov I A 1993 Proceedings of IEEE International Conference on Microelectronic Test Structures, March 22-25, 1993, Sitges, Spain, p. 9
[1] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[4] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
[5] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[6] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[7] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[8] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[9] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[10] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[11] Spectroscopic and radiation-resistant properties of Er, Pr: GYSGG laser crystal operated at 2.79μm
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Xiu-Li Li(李秀丽), Mao-Jie Cheng(程毛杰), Qing-Li Zhang(张庆礼), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2017, 26(7): 074217.
[12] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[13] Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET
Zhang Yue (张月), Zhuo Qing-Qing (卓青青), Liu Hong-Xia (刘红侠), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057304.
[14] Study on the degradation of NMOSFETs with ultra-thin gate oxide under channel hot electron stress at high temperature
Hu Shi-Gang(胡仕刚),Hao Yue(郝跃), Ma Xiao-Hua(马晓华), Cao Yan-Rong(曹艳荣), Chen Chi(陈炽), and Wu Xiao-Feng(吴笑峰) . Chin. Phys. B, 2009, 18(12): 5479-5484.
[15] Degradation characteristics and mechanism of PMOSFETs under NBT--PBT--NBT stress
Liu Hong-Xia(刘红侠), Li Zhong-He(李忠贺), and Hao Yue(郝跃). Chin. Phys. B, 2007, 16(5): 1445-1449.
No Suggested Reading articles found!