CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms |
Wen-Hao Zhang(张文浩)1,†, Ma-Guang Zhu(朱马光)2,†, Kang-Hua Yu(余康华)3, Cheng-Zhan Li(李诚瞻)4, Jun Wang(王俊)3, Li Xiang(向立)1, and Yu-Wei Wang(王雨薇)3,‡ |
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 2 School of Integrated Circuits, Nanjing University, Suzhou 210008, China; 3 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 4 State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou CRRC Times Semiconductor Co., Ltd., Zhuzhou 412001, China |
|
|
Abstract Lateral type n-channel 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs), fabricated using a current industrial process, are irradiated with gamma rays at different irradiation doses in this paper to carry out a profound study on the generation mechanism of radiation-induced interface traps and oxide trapped charges. Electrical parameters (e.g., threshold voltage, subthreshold swing and channel mobility) of the device before and after irradiation are investigated, and the influence of the channel orientation ($[1\overline{1}00]$ and $[11\overline {2} 0]$) on the radiation effect is discussed for the first time. A positive threshold voltage shift is observed at very low irradiation doses ($< 100$ krad (Si)); the threshold voltage then shifts negatively as the dose increases. It is found that the dependence of interface trap generation on the radiation dose is not the same for doses below and above 100 krad. For irradiation $\rm doses < 100 $ krad, the radiation-induced interface traps with relatively high generation speeds dominate the competition with radiation-induced oxide trapped charges, contributing to the positive threshold voltage shift correspondingly. All these results provide additional insight into the radiation-induced charge trapping mechanism in the SiO$_{2}$/SiC interface.
|
Received: 30 November 2022
Revised: 03 February 2023
Accepted manuscript online: 20 February 2023
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52107190 and 62101181) and China Postdoctoral Science Foundation (Grant No. 2021M700203). |
Corresponding Authors:
Yu-Wei Wang
E-mail: yuweiwang@hnu.edu.cn
|
Cite this article:
Wen-Hao Zhang(张文浩), Ma-Guang Zhu(朱马光), Kang-Hua Yu(余康华), Cheng-Zhan Li(李诚瞻),Jun Wang(王俊), Li Xiang(向立), and Yu-Wei Wang(王雨薇) Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms 2023 Chin. Phys. B 32 057305
|
[1] Yoshikawa M, Itoh H, Morita Y, Nashiyama I, Misawa S, Okumura H and Yoshida S 1991 J. App. Phys. 70 1309 [2] Li H J, Zhang Y M, Tang X Y, Li D X and Song Q W 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia, May 16-18, 2018, Xi'an, China, p. 156 [3] Ahyi A C, Wang S R and Williams J R 2006 Mater. Sci. Forum. 527-529 1063 [4] Mitomo S, Matsuda T, Murata K, Yokoseki T, Makino T, Takeyama A, Onoda S, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T and Hijikata Y 2017 Phys. Status Solidi A 214 1600425 [5] Yu Q K, Waqas A, Cao S, Wang H, Lv H, Sun Yi, Mo R, Wang Q Y, Mei B, Sun J J, Zhang H W, Tang M, Bai S, Zhang T, Bai Y and Zhang C R 2022 IEEE Trans. Nucl. Sci. 69 1127 [6] Sun Y B, Wan X, Liu Z Y, Jin H, Yan J Z, Li X J and Shi Y L 2022 Radiat. Phys. Chem. 197 110219 [7] Ohshima T, Yoshikawa M, Itoh H, Aoki Y and Nashiyama I 1998 Jpn. J. Appl. Phys. 37 L1002 [8] Fleetwood D M 2020 IEEE Trans. Nucl. Sci. 67 1216 [9] Hu D Q, Zhang J W, Jia Y P, Wu Y, Peng L and Tang Y 2018 IEEE Trans. Electron Devices 65 3719 [10] Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V and Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453 [11] Kimoto T, Kaneko M, Tachiki K, Ito K, Ishikawa R, Chi X, Stefanakis D, Kobayashi T and Tanaka H 2021 IEEE International Electron Devices Meeting, December 11-16, 2021, San Francisco, CA, USA, p. 36.1.1 [12] Cabello M, Soler V, Rius G, Montserrat J, Rebollo J and Godignon P 2018 Mater. Sci. Semiconductor Process. 78 22 [13] Pande P, Haasmann D, Han J, Moghadam H A, Tanner P and Dimitrijev S 2020 Microelectron. Rel. 112 113790 [14] Wang M H, Yang M C, Liu W H, Qi J W, Yang S Q, Han C Y, Geng L and Hao Y 2021 IEEE Trans. Electron Devices 68 1841 [15] Luo Z P, Wan C P, Jin Z and Xu H Y 2021 Semicond. Sci. Tech. 36 045021 [16] Jia Y F, Lv H L, Tang X Y, Han C, Song Q W, Zhang Y M, Zhang Y M, Dimitrijev S, Han J S and Haasmann D 2019 Mater. Electron. 30 10302 [17] Okamoto D, Yano H, Oshiro Y, Hatayama T, Uraoka Y and Fuyuki T 2009 Appl. Phys. Exp. 2 021201 [18] Ohshima T, Yokoseki T, Murata K, Matsuda T, Mitomo S, Abe H, Makino T, Onoda S, Hijikata Y, Tanaka Y, Kandori M, Okubo S and Yoshie T 2016 Jpn. J. Appl. Phys. 55 01AD01 [19] Takeyama A, Makino T, Okubo S, Tanaka Y, Yoshie T, Hijikata Y and Ohshima T 2019 Materials 12 2741 [20] Zhang E X, Zhang C X, Fleetwood D M, Schrimpf R D, Dhar S, Ryu S H, Shen X and Pantelides S T 2012 IEEE Trans. Device Mater. Rel. 12 391 [21] Via F L, Camarda M and Magna A L 2014 Appl. Phys. Rev. 1 031301 [22] Scharnholz S, Stein von Kamienski E, Gölz A, Leonhard C and Kurz H 1998 Mater. Sci. Forum. 264-268 1001 [23] Woerle J, Johnson B, Bongiorno C, Yamasue K, Ferro G, Dutta D, Jung T, Sigg H, Cho Y, Grossner U and Camarda M 2019 Phys. Rev. Mater. 3 084602 [24] Schroder D K 2005 Semiconductor Material and Device Characterization (3rd ed) (Hoboken: Wiley) p. 360 [25] Murata K, Mitomo S, Matsuda T, Yokoseki T, Makino T, Onoda S, Takeyama A, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T and Hijikata Y 2017 Phys. Status Solidi A 214 1600446 [26] Akturk A, McGarrity J M, Potbhare S and Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258 [27] Hjelm M, Bertilsson K and Nilsson H E 2001 Appl. Surf. Sci. 184 194 [28] Saks N S, Ancona M G and Lipkin L A 2004 Mater. Sci. Forum. 457-460 689 [29] Fiorenza P, Giannazzo F, Frazzetto A and Roccaforte F 2012 J. Appl. Phys. 112 084501 [30] Lee K K, Ohshima T, Ohi A, Itoh H and Pensl G 2006 Jpn. J. Appl. Phys. 45 6830 [31] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103 [32] Zhu M G, Xiao H S, Yan G P, Sun P K, Jiang J H, Cui Z, Zhao J W, Zhang Z Y and Peng L M 2020 Nat. Electron. 3 622 [33] Zhu M G, Zhou J S, Sun P K, Peng L M and Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756 [34] Wang X, Zhu M G, Li X Q, Qin Z Z, Lu G H, Zhao J W and Zhang Z Y 2022 Adv. Mater. 34 2204066 [35] Dixit S K, Dhar S, Rozen J, Wang S, Schrimpf R D, Fleetwood D M, Pantelides S T, Williams J R and Feldman L C 2006 IEEE Trans. Nucl. Sci. 53 3687 [36] Knežević T, Hadžipašić A, Ohshima T, Makino T and Capan I 2022 Appl. Phys. Lett. 120 252101 [37] McWhorter P J and Winokur P S 1986 Appl. Phys. Lett. 48 133 [38] Petrosjanc K O and Kharitonov I A 1993 Proceedings of IEEE International Conference on Microelectronic Test Structures, March 22-25, 1993, Sitges, Spain, p. 9 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|