Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128701    DOI: 10.1088/1674-1056/acc7f6
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Si-Ge based vertical tunnel field-effect transistor of junction-less structure with improved sensitivity using dielectric modulation for biosensing applications

Lucky Agarwal1, Varun Mishra2, Ravi Prakash Dwivedi1,†, Vishal Goyal3, and Shweta Tripathi4
1 School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India;
2 Department of Electronics and Communication Engineering Graphic Era(deemed to be University), Dehradun, Uttarakhand 248002, India;
3 Department of Electronics and Communication Engineering, GLA University, Mathura 281406, India;
4 Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004, India
Abstract  A dielectric modulation strategy for gate oxide material that enhances the sensing performance of biosensors in junction-less vertical tunnel field effect transistors (TFETs) is reported. The junction-less technique, in which metals with specific work functions are deposited on the source region to modulate the channel conductivity, is used to provide the necessary doping for the proper functioning of the device. TCAD simulation studies of the proposed structure and junction structure have been compared, and showed an enhanced rectification of 104 times. The proposed structure is designed to have a nanocavity of length 10 nm on the left- and right-hand sides of the fixed gate dielectric, which improves the biosensor capture area, and hence the sensitivity. By considering neutral and charged biomolecules with different dielectric constants, TCAD simulation studies were compared for their sensitivities. The off-state current IOFF can be used as a suitable sensing parameter because it has been observed that the proposed sensor exhibits a significant variation in drain current. Additionally, it has been investigated how positively and negatively charged biomolecules affect the drain current and threshold voltage. To explore the device performance when the nanogaps are fully filled, half filled and unevenly filled, extensive TCAD simulations have been run. The proposed TFET structure is further benchmarked to other structures to show its better sensing capabilities.
Keywords:  biomolecules      high-k dielectric      junction-less      vertical tunnel field effect transistor (TFET)  
Received:  09 November 2022      Revised:  22 March 2023      Accepted manuscript online:  28 March 2023
PACS:  87.14.-g (Biomolecules: types)  
  77.22.Ch (Permittivity (dielectric function))  
  85.30.-z (Semiconductor devices)  
  61.82.Fk (Semiconductors)  
Fund: Authors greatly acknowledge MNNIT Allahabad for accessing the software facility.
Corresponding Authors:  Ravi Prakash Dwivedi     E-mail:  raviprakash.dwivedi@vit.ac.in

Cite this article: 

Lucky Agarwal, Varun Mishra, Ravi Prakash Dwivedi, Vishal Goyal, and Shweta Tripathi Si-Ge based vertical tunnel field-effect transistor of junction-less structure with improved sensitivity using dielectric modulation for biosensing applications 2023 Chin. Phys. B 32 128701

[1] Barbaro M, Bonfiglio A and Raffo L 2006 IEEE Trans. Electron. Devices 53 158
[2] Kim C H, Jung C, Park H G and Choi Y K 2008 Biochip J. 2 127
[3] Chanda M, Das R, Kundu A and Sarkar C K 2017 Superlattices Microstruct. 104 451
[4] Narang R, Saxena M, Gupta R S and Gupta M 2012 IEEE Electron. Device Lett. 33 268
[5] Choi J M, Han J W, Choi S J and Choi Y K 2010 IEEE Trans. Electron. Devices 57 3477
[6] Jayaswal N, Raman A, Kumar N, Singh S 2019 Superlattices Microstruct. 125 256
[7] Singh S, Khosla M and Wadhwa G 2021 Appl. Phys. A 127 16
[8] Tsukada K, Kariya M, Yamaguchi T, Kiwa T, Yamada H, Maehara T, Yamamoto T, Kunitsugu S 2010 Jpn. J. Appl. Phys. 49 024206
[9] Wei W, Lü W, Han Y, Zhang C and Chen D 2023 Chin. Phys. B 32 097301
[10] Gnudi A, Reggiani S, Gnani E and Baccarani G 2012 IEEE Electron Device Lett. 33 336
[11] Li W and Woo J 2020 IEEE Trans. Electron Device 67 1480
[12] Ko E, Lee H, Park J and Shin C 2016 IEEE Trans. Electron Devices 63 5030
[13] Wang B, Hu S and Feng Y 2020 Chin. Phys. B 29 107401
[14] Nigam K, Kondekar P and Sharma D 2016 Micro Nano Lett. 11 319
[15] Choi K M and Choi W Y 2013 IEEE Electron Device Lett. 34 942
[16] Zhang W H, Li Z C, Guan Y H and Zhang Y F 2017 Chin. Phys. B 26 078502
[17] Shan C, Wang Y and Bao M T 2016 IEEE Trans. Electron. Devices 63 2275
[18] Busse S, Scheumann V, Menges B and Mittler S 2002 Biosensors Bioelectron. 17 710
[19] Bhattacharyya A, Chanda M and De D 2019 IEEE Trans. Electron. Devices 66 3988
[20] Bibi F, Villain M, Guillaume C, Sorli B and Gontard N 2016 Sensors 16 1232
[21] Choi W Y, Park B, Lee J D and Liu T K 2007 IEEE Trans. Electron. Device Lett. 28 743
[22] Bhuwalka K K, Sedlmaier S, Ludsteck A K, Toksdorf C and Schulzeand J, Eisele I 2004 IEEE Trans. Electron. Device 51 279
[23] Wirths S, Tiedemann A T, rellenkamp S, Buca D, Zhao Q T and Mantl S 2015 in Proc. Int. Electron. Devices Meeting 608
[24] Huang Q, Huang R, Wu C, Zhu H, Chen C, Wang J, Guo L, Wang R, Ye L and Wang Y 2014 in Proc. IEEE Int. Electron. Devices Meeting 13
[25] Zhou G, Li R, Vasen T, Qi M, Chae S, Lu Y, Zhang Q, Zhu H, Kuo J M, Kosel T and Wistey M 2012 in Proc. Int. Electron. Devices Meeting 32
[26] Devi W V and Bhowmick B 2019 Micro Nano Lett. 14 69
[27] Sarkar D and Banerjee K 2012 Appl. Phys. Lett. 100 143108
[28] Im H, Huang X J, Gu B and Choi Y K 2007 Nat. Nanotechnol. 2 430
[29] Kanungo S, Chattopadhyay S, Gupta P S and Rahaman H 2015 IEEE Trans. Electron. Devices 62 994
[30] Narang R, Saxena M, Gupta R S and Gupta M 2015 IEEE Trans. Nanotechnol. 14 427
[31] Mishra V, Verma Y K and Gupta S K 2019 Journal of Nanoelectronics and Optoelectronics 14 161
[32] Wangkheirakpam V D, Bhowmick B and Pukhrambam P D 2020 IEEE Trans. Nanotechnology 19 156
[33] Kanungo S, Chattopadhyay S, Gupta P S, Sinha K and Rahaman H 2016 IEEE Trans. Electron. Devices 63 2589
[34] Verma M, Tirkey S, Yadav S, Sharma D and Yadav D S 2017 IEEE Trans. Electron. Devices 64 3841
[35] Goswami R and Bhowmick B 2019 IEEE Sens. J. 9 9600
[1] Investigation of heavy ion irradiation effects on a charge trapping memory capacitor by bm C-V measurement
Qiyu Chen(陈麒宇), Xirong Yang(杨西荣), Zongzhen Li(李宗臻), Jinshun Bi(毕津顺), Kai Xi(习凯),Zhenxing Zhang(张振兴), Pengfei Zhai(翟鹏飞), Youmei Sun(孙友梅), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(9): 096102.
[2] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[3] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[4] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[5] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[6] Mechano-chemical selections of two competitive unfolding pathways of a single DNA i-motif
Xu Yue (徐悦), Chen Hu (陈虎), Qu Yu-Jie (璩玉杰), Artem K. Efremov, Li Ming (黎明), Ouyang Zhong-Can(欧阳钟灿) , Liu Dong-Sheng(刘冬生), Yan Jie (严洁)​​. Chin. Phys. B, 2014, 23(6): 068702.
[7] Analysis of flatband voltage shift of metal/high-k/SiO2/Si stack based on energy band alignment of entire gate stack
Han Kai (韩锴), Wang Xiao-Lei (王晓磊), Xu Yong-Gui (徐永贵), Yang Hong (杨红), Wang Wen-Wu (王文武). Chin. Phys. B, 2014, 23(11): 117702.
[8] Effects of charge and dipole on flatband voltage in an MOS device with a Gd-doped HfO2 dielectric
Han Kai (韩锴), Wang Xiao-Lei (王晓磊), Yang Hong (杨红), Wang Wen-Wu (王文武). Chin. Phys. B, 2013, 22(11): 117701.
[9] Flat-band voltage shift in metal-gate/high-k/Si stacks
Huang An-Ping(黄安平), Zheng Xiao-Hu(郑晓虎), Xiao Zhi-Song(肖志松), Yang Zhi-Chao(杨智超), Wang Mei(王玫), Paul K. Chu(朱剑豪), and Yang Xiao-Dong(杨晓东) . Chin. Phys. B, 2011, 20(9): 097303.
No Suggested Reading articles found!