INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of chaperone-client interaction strength on Hsp70-mediated protein folding |
Lujun Zou(邹禄军)1, Jiajun Lu(陆伽俊)1, and Xiulian Xu(徐秀莲)2,† |
1 Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China; 2 School of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China |
|
|
Abstract Protein folding in crowding cellular environment often relies on the assistance of various chaperones. Hsp70 is one of the most ubiquitous chaperones in cells. Previous studies showed that the chaperone-client interactions at the open state tend to remodel the protein folding energy landscape and direct the protein folding as a foldase. In this work, we further investigate how the chaperone-client interaction strength modulates the foldase function of Hsp70 by using molecular simulations. The results showed that the time of substrate folding (including the whole folding step and substrate release step) has a non-monotonic dependence on the interaction strength. With the increasing of the chaperone-client interaction strength, the folding time decreases first, and then increases. More detailed analysis showed that when the chaperone-client interaction is too strong, even small number of chaperones-client contacts can maintain the substrate bound with the chaperone. The sampling of the transient chaperones-client complex with sparse inter-molecule contacts makes the client protein have chance to access the misfolded state even it is bound with chaperone. The current results suggest that the interaction strength is an important factor controlling the Hsp70 chaperoning function.
|
Received: 24 June 2023
Revised: 21 July 2023
Accepted manuscript online: 26 July 2023
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
87.14.E-
|
(Proteins)
|
|
87.15.Cc
|
(Folding: thermodynamics, statistical mechanics, models, and pathways)
|
|
87.15.hm
|
(Folding dynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305139 and 11974173) and the HPC Center of Nanjing University. |
Corresponding Authors:
Xiulian Xu
E-mail: xuxl@yzu.edu.cn
|
Cite this article:
Lujun Zou(邹禄军), Jiajun Lu(陆伽俊), and Xiulian Xu(徐秀莲) Effect of chaperone-client interaction strength on Hsp70-mediated protein folding 2023 Chin. Phys. B 32 118701
|
[1] Dobson C M 2003 Nature 426 884 [2] Leopold P E, Montal M and Onuchic J N 1992 Proc. Natl. Acad. Sci. 89 8721 [3] Onuchic J N, Luthey-Schulten Z and Wolynes P G 1997 Annu. Rev. Phys. Chem. 48 545 [4] Shea J E, Onuchic J N and Brooks III C L 1999 Proc. Natl. Acad. Sci. 96 12512 [5] Tzul F O, Vasilchuk D and Makhatadze G I 2017 Proc. Natl. Acad. Sci. 114 E1627 [6] Ferreiro D U, Hegler J A, Komives E A and Wolynes P G 2007 Proc. Natl. Acad. Sci. 104 19819 [7] Li W, Wolynes P G and Takada S 2011 Proc. Natl. Acad. Sci. 108 3504 [8] Li W, Wang W and Takada S 2014 Proc. Natl. Acad. Sci. 111 10550 [9] Li W, Wang J, Zhang J, Takada S and Wang W 2019 Phys. Rev. Lett. 122 238102 [10] Gianni S, Camilloni C, Giri R, et al. 2014 Proc. Natl. Acad. Sci. 111 14141 [11] Ellis R J 2001 Trends Biochem. Sci 26 597 [12] Dobson C M 2001 Phil. Trans. R. Soc. Lond. B 356 133 [13] Thirumalai D and Lorimer G H 2001 Annu. Rev. Biophys. Biomol. Struct. 30 245 [14] Bukau B and Horwich A L 1998 Cell 92 351 [15] Wang W, Vinocur B, Shoseyov O and Altman A 2004 Trends Plant Sci. 9 244 [16] Mayer M P 2013 Trends Biochem. Sci. 38 507 [17] Rosenzweig R, Nillegoda N B, Mayer M P and Bukau B 2019 Nat. Rev. Mol. Cell Biol. 20 665 [18] Clerico E M, Tilitsky J M, Meng W and Gierasch L M 2015 J. Mol. Biol. 427 1575 [19] Goloubinoff P and De Los Rios P 2007 Trends Biochem. Sci. 32 372 [20] Sharma S K, De Los Rios P, Christen P, Lustig A and Goloubinoff P 2010 Nat. Chem. Biol. 6 914 [21] Lu J, Zhang X, Wu Y, Sheng Y, Li W and Wang W 2021 Biophys. J. 120 1971 [22] Sekhar A, Rosenzweig R, Bouvignies G and Kay L E 2015 Proc. Natl. Acad. Sci. 112 10395 [23] Rüdiger S, Germeroth L, Schneider-Mergener J and Bukau B 1997 EMBO J 16 1501 [24] Sekhar A, Rosenzweig R, Bouvignies G and Kay L E 2016 Proc. Proc. Natl. Acad. Sci. 113 E2794 [25] Lindorff-Larsen K, Piana S, Dror R O and Shaw D E 2011 Science 334 517 [26] Tang Y, Yao Y and Wei G 2020 Chin. Phys. B 29 108710 [27] Zhang C and Zhou X 2020 Chin. Phys. B 29 108706 [28] Takada S, Kanada R, Tan C, Terakawa T, Li W and Kenzaki H 2015 Acc. Chem. Res. 48 3026 [29] Zhang W and Zhang J 2021 Chin. Phys. B 30 108703 [30] Zhu W, Li W and Wang W 2021 Chin. Phys. B 30 078701 [31] Nishikawa T, Nagadoi A, Yoshimura S, Aimoto S and Nishimura Y 1998 Structure 6 1057 [32] Zahn M, Berthold N, Kieslich B, Knappe D, Hoffmann R and Sträter N 2013 J. Mol. Biol. 425 2463 [33] Terakawa T and Takada S 2011 Biophys. J. 101 1450 [34] Li W, Terakawa T, Wang W and Takada S 2012 Proc. Natl. Acad. Sci. 109 17789 [35] Go N 1983 Annu. Rev. Biophys. Bioeng. 12 183 [36] Clementi C, Nymeyer H and Onuchic J N 2000 J. Mol. Biol. 298 937 [37] Li W, Yoshii H, Hori N, Kameda T and Takada S 2010 Methods 52 106 [38] Takada S 2012 Curr. Opin. Struct. Biol. 22 130 [39] Kim Y C and Hummer G 2008 J. Mol. Biol. 375 1416 [40] Jackson M B 2006 Molecular and Cellular Biophysics (Cambridge:Cambridge University Press) pp. 279-283 [41] Okazaki K I, Koga N, Takada S, Onuchic J N and Wolynes P G 2006 Proc. Natl. Acad. Sci. 103 11844 [42] Bertelsen E B, Chang L, Gestwicki J E and Zuiderweg E R 2009 Proc. Natl. Acad. Sci. 106 8471 [43] Zhuravleva A, Clerico E M and Gierasch L M 2012 Cell 151 1296 [44] Li W, Wang J, Zhang J and Wang W 2015 Curr. Opin. Struct. Biol. 30 25 [45] Lu J, Scheerer D, Haran G, Li W and Wang W 2022 J. Phys. Chem. B 126 8188 [46] Zhang Y, Chen M, Lu J, Li W, Wolynes P G and Wang W 2022 J. Phys. Chem. B 126 6792 [47] Zhang W, Cao Y, Li W and Wang W 2021 New J. Phys. 23 123010 [48] Kenzaki H, Koga N, Hori N, et al. 2011 J. Chem. Theory Comput. 7 1979 [49] DeLano W L 2009 The PyMOL Molecular Graphics System (DeLano Scientific:San Carlos, CA) [50] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33 [51] Fink A L 1999 Physiol. Rev. 79 425 [52] Hartl F U, Bracher A and Hayer-Hartl M 2011 Nature 475 324 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|