Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108502    DOI: 10.1088/1674-1056/ac5c36
REVIEW Prev   Next  

Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures

Haixin Ma(马海鑫)1, Yanhui Xing(邢艳辉)1,†, Boyao Cui(崔博垚)1, Jun Han(韩军)1, Binghui Wang(王冰辉)1, and Zhongming Zeng(曾中明)2,3
1. Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, China;
2. Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
3. Nanchang Nano-Devices and Technologies Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
Abstract  With the development of Moore's law, the future trend of devices will inevitably be shrinking and integration to further achieve size reduction. The emergence of new two-dimensional non-layered materials (2DNLMs) not only enriches the 2D material family to meet future development, but also stimulates the global enthusiasm for basic research and application technologies in the 2D field. Van der Waals (vdW) heterostructures, in which two-dimensional layered materials (2DLMs) are physically stacked layer by layer, can also occur between 2DLMs and 2DNLMs hybrid heterostructures, providing an alternative platform for nanoelectronics and optoelectronic applications. Here, we outline the recent developments of 2DLMs/2DNLMs hybrid heterostructures, with particular emphasis on major advances in synthetic methods and applications. And the categories and crystal structures of 2DLMs and 2DNLMs are also shown. We highlight some promising applications of the heterostructures in electronics, optoelectronics, and catalysis. Finally, we provide conclusions and future prospects in the 2D materials field.
Keywords:  2D layered materials      2D non-layered materials      van der Waals heterostructure      applications  
Received:  22 November 2021      Revised:  06 February 2022      Accepted manuscript online: 
PACS:  85.60.-q (Optoelectronic devices)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Natural Science Fundation of China (Grant Nos. 61731019, 60908012, 61575008, and 61775007) and the Beijing Natural Science Foundation (Grant Nos. 4182015 and 4202010).
Corresponding Authors:  Yanhui Xing     E-mail:  xingyanhui@bjut.edu.cn

Cite this article: 

Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明) Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures 2022 Chin. Phys. B 31 108502

[1] Zeng J W, Liang S J, Gao A, Wang Y, Pan C, Wu C, Liu E, Zhang L, Cao T, Liu X, Fu Y, Wang Y, Watanabe K, Taniguchi T, Lu H and Miao F 2018 Phys. Rev. B 98 125414
[2] Wang F, Wang Z, Shifa T A, Wen Y, Wang F, Zhan X, Wang Q, Xu K, Huang Y, Yin L, Jiang C and He J 2017 Adv. Funct. Mater. 27 1603254
[3] Cheng Y, Wang J Z, Wei X X, Guo D, Wu B, Yu L W, Wang X R and Shi Y 2015 Chin. Phys. Lett. 32 117801
[4] Sun S, Dang J, Xie X, Yu Y, Yang L, Xiao S, Wu S, Peng K, Song F, Wang Y, Yang J, Qian C, Zuo Z and Xu X 2020 Chin. Phys. Lett. 37 087801
[5] Wang J H, Quan Y M, Liu D Y and Zou L J 2020 Chin. Phys. Lett. 37 017101
[6] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593
[7] Zhang M L, Zou X M and Liu X Q 2020 Chin. Phys. Lett. 37 118501
[8] Xiao R C, Wang Z, Zhang Z Q, Liu J and Jiang H 2021 Chin. Phys. Lett. 38 057301
[9] Zhou S H, Zhou C W, Yang X D, Li Y, Zhong J Q and Mao H Y 2021 Chin. Phys. Lett. 38 057305
[10] Zhang Y, Wang X X and Shi L J 2020 J. Phys: Condens Matter 33 115301
[11] Liu J, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y and Lei W 2020 ACS Appl. Mater. Interfaces 12 31810
[12] Zhou N, Yang R and Zhai T 2019 Mater. Today Nano 8 100051
[13] Shin G H, Park C, Lee K J, Jin H J and Choi S Y 2020 Nano Lett. 20 5741
[14] Murali K, Abraham N, Das S, Kallatt S and Majumdar K H 2019 ACS Appl. Mater. Interfaces 11 30010
[15] Huang Z, Jiang Y, Han Q, Yang M, Han J, Wang F, Luo M, Li Q, Zhu H, Liu X, Gou J and Wang J 2020 Nanotechnology 31 064001
[16] Mukherjee S, Dutta D, Mohapatra P K, Dezanashvili L, Ismach A and Koren E 2020 ACS Nano 14 17543
[17] Wu Z, Jie W, Yang Z and Hao, J 2020 Mater. Today Nano 12 100092
[18] Zheng Z, Yao J, Li J and Yang G 2020 Mater. Horizons 7 2185
[19] Wang F, Wang Z, Wang Q, Wang F, Yin L, Xu K, Huang Y and He J 2015 Nanotechnology 26 292001
[20] Wang H, Strait J H, George P A, Shivaraman S, Shields V B, Chandrashekhar M, Hwang J, Rana F, Spencer M G, Ruiz-Vargas C S and Park J 2010 Appl. Phys. Lett. 96 081917
[21] Graham M W, Shi S F, Ralph D C, Park J and McEuen P L 2013 Nat. Phys. 9 103
[22] Jiang X, Zhao J and Ahuja R 2013 J. Phys: Condens. Matter 25 122204
[23] Li L, Wang W K, Chai Y, Li H Q, Tian M L and Zhai T Y 2017 Adv. Funct. Mater. 27 1701011
[24] Bai X D, Wang E G, Yu J and Yang H 2000 Appl. Phys. Lett. 77 67
[25] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[26] Xie Y, Wu E, Zhang J, Hu X, Zhang D and Liu J 2019 ACS Appl. Mater. Interfaces 11 14215
[27] Xie Y, Zhang B, Wang S, Wang D, Wang A, Wang Z, Yu H, Zhang H, Chen Y, Zhao M, Huang B, Mei L and Wang J 2017 Adv. Mater. 29 1605972
[28] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
[29] Afzaal M and O'Brien P 2006 J. Mater. Chem. 16 1597
[30] Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T and Gao X P 2015 Nano. Lett. 15 3815
[31] Zhao H, Mao Y, Mao X, Shi X, Xu C, Wang C, Zhang S and Zhou, D 2017 Adv. Funct. Mater. 28 1704855
[32] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[33] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[34] Han M, Ma J, Xu H and Liu Y 2015 CrystEngComm 17 8449
[35] Chithambararaj A, Rajeswari Yogamalar N and Bose A C 2016 Cryst. Growth Des. 16 1984
[36] Li W, Cheng F, Tao Z and Chen J 2006 J. Phys. Chem. B 110 119
[37] Coquet R and Willock D J 2005 Phys. Chem. Chem. Phys. 7 3819
[38] Gu Y Y, Wang Y F, Xia J and Meng X M 2020 Chin. Phys. Lett. 37 048101
[39] Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
[40] Yang M, Shu H, Tang P, Liang P, Cao D and Chen X 2013 ACS Appl. Mater. Interfaces 13 8764
[41] Sun X, Shi L, Huang H, Song X and Ma T 2020 Chem. Commun. 56 11000
[42] Tian Z, Wei C and Sun J 2020 Nanoscale Adv. 2 2220
[43] Zhang Q, Hu Y, Guo S, Goebl Ja and Yin Y 2010 Nano Lett. 10 5037
[44] Barman S K and Huda M N 2019 Phys. Status solidi- R 13 1800554
[45] Kim J, Oh S, Mastro M A and Kim J 2016 Phys. Chem. Chem. Phys. 18 15760
[46] Hwang W S, Verma A, Peelaers H, Protasenko V, Rouvimov S, Xing H, Seabaugh A, Haensch W, De Walle C V, Galazka Z, Albrecht M, Fornari R and Jena D 2014 Appl. Phys. Lett. 104 203111
[47] Du Y, Xue Q, Zhang Z, Xia F, Li J and Han Z 2013 Sensors Actuat B-Chem. 186 796
[48] Zhang C, Xu Y, Lu P, Wei C, Zhu C, Yao H, Xu F and Shi J 2019 Angew. Chem. Int. Ed. 58 8814
[49] Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J and Li Y 2014 Nat. Commun. 5 1
[50] Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J and Xie Y 2016 Nature 529 68
[51] Mohite S V, Ganbavle V V and Rajpure K Y 2017 Mater. Res. Bull. 95 491
[52] Liu J, Lin X, Sun M, Du B, Li L, Bai J and Zhou M 2020 Talanta 219 121323
[53] Lin Y, Hu H and Hu Y H 2020 Appl. Surf. Sci. 502 144202
[54] Lin X, Yan P, Xu F, Wu W, Hu T, Wei C and Xu Q 2019 J. Mater. Chem. C 7 7196
[55] Mohiuddin M, Zavabeti A, Haque F, Mahmood A, Datta R S, Syed N, Khan M W, Jannat A, Messalea K, Zhang B Y, Chen G, Zhang H, Ou J Z and Mahmood N 2020 J. Mater. Chem. A 8 2789
[56] Wang F, Yu Y, Yin X, Tian P and Wang X 2017 J. Mater. Chem. A 5 9060
[57] Feng W, Wang X, Zhang J, Wang L, Zheng W, Hu P, Cao W and Yang B 2014 J. Mater. Chem. C 2 3254
[58] Wen Y, Wang Q, Yin L, Liu Q, Wang F, Wang F, Wang Z, Liu K, Xu K, HuangY, Shifa T A, Jiang C, Xiong J and He J 2016 Adv. Mater. 28 8051
[59] Zhao X, Qing Y, Huang H, Yu Q, Liu B, Yang J, Dong Z, Shen Z, Zhu B and Liao L 2021 Nano Research 14 1955
[60] Lu J, Zheng Z, Yao J, Gao W, Xiao Y, Zhang M and Li J 2020 Nanoscale 12 7196
[61] Chu J, Zhang Y, Wen Y, Qiao R, Wu C, He P, Yin L, Cheng R, Wang F, Wang Z, Xiong J, Li Y and He J 2019 Nano Lett. 19 2154
[62] Sun Y, Sun Z, Gao S, Cheng H, Liu Q, Piao J, Yao T, Wu C, Hu S, Wei S and Xie Y 2012 Nat. Commun. 3 1057
[63] Wang Q, Cai K, Li J, Huang Y, Wang Z, Xu K, Wang F, Zhan X, Wang F, Wang K and He J 2016 Adv. Mater. 28 617
[64] Che Y, Liu K, Liu J, Lv T, Wei B, Zhang T, Zeng M, Wang Z and Fu L 2018 J. Am. Chem. Soc. 140 16392
[65] Wang D, Chen X, Fang X, Tang J, Lin F, Wang X, Liu G, Liao L, Ho J C and Wei Z 2021 Nanoscale 13 1086
[66] Bai Y, Zhang H, Zhang M, Wang D, Zeng H, Zhao J, Xue H, Wu G, Su J, Xie Y, Zhang Y, Jing H, Yu H, Hu Z, Peng R, Wang M and Wu Y 2020 Nanoscale 12 1100
[67] Chai R, Chen Y, Zhong M, Yang H, Yan F, Peng M, Sun Y, Wang K, Wei Z, Hu W, Liu Q, Lou Z and Shen G 2020 J. Mater. Chem. C 8 6388
[68] Liu B, Wang Y, Peng H Q, Yang R, Jiang Z, Zhou X, Lee C S, Zhao H and Zhang W 2018 Adv. Mater. 30 1803144
[69] Yao K, Chen P, Zhang Z, Li J, Ai R, Ma H, Zhao B, Sun G, Wu R, Tang X, Li B, Hu J, Duan X and Duan X 2018 npj 2D Mater. Appl. 2 1
[70] Feng W, Zhao Y, Zhao D, Wang W, Xia Z, Zheng X, Wang X, Wang W and Wang W 2021 RSC Adv. 11 3673
[71] Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P L, Constantinescu G C, Kandyba V, Barinov A, Hine N D M, Xu X and Cobden D H 2017 Sci. Adv. 3 e1601832
[72] Feng W, Zheng W, Chen X, Liu G, Cao W and Hu P 2015 Chem. Mater. 27 983
[73] Yang Z and Hao J 2016 J. Mater. Chem. C 4 8859
[74] Zhou J 2019 Appl. Phys. Lett. 115 162104
[75] Zheng Z, Yao J and Yang G 2017 ACS Appl. Mater. Interfaces 9 7288
[76] Wang Q, Wen Y, He P, Yin Ll Wang Z, Wang F, Xu K, Huang Y, Wang F, Jiang C and He J 2016 Adv. Mater. 28 6497
[77] Wen Y, Yin L, He P, Wang Z, Zhang X, Wang Q, Shifa T A, Xu K, Wang F, Zhan X, Wang F, Jiang C and He J 2016 Nano Lett. 16 6437
[78] Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H and PatanéA 2017 2D Mater. 4 025043
[79] Ren D, Merdrignac-Conanec O, Dorcet V, Cathelinaud M, Zheng Z, Ma H and Zhang X 2020 Ceram. Int. 46 25503
[80] Kim S, Oh S and Kim J 2019 ACS Photon. 6 1026
[81] Yan X, Esqueda I S, Ma J, Tice J and Wang H 2018 Appl. Phys. Lett. 112 032101
[82] Kim J, Mastro M A, Tadjer M J and Kim J 2018 ACS Appl. Mater. Interfaces 10 29724
[83] Kim J, Mastro M A, Tadjer M J and Kim J 2017 ACS Appl. Mater. Interfaces 9 21322
[84] Puthirath Balan A, Radhakrishnan S, Woellner C F, Sinha S K, Deng L, Reyes C D L, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Martí A A, Van Aken P A, Varghese O K, Tiwary C S, Malie Madom Ramaswamy Iyer A and Ajayan P M 2018 Nat. Nanotechnol. 13 602
[85] Kim J and Kim J 2020 ACS Appl. Mater. Interfaces 12 7310
[86] Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y and Li X 2018 J. Mater. Chem. C 6 10982
[87] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
[88] Chemelewski W D, Lee H C, Lin J F, Bard A J and Mullins C B 2014 J. Am. Chem. Soc 136 2843
[89] Kalita G, Mahyavanshi R D, Desai P, Ranade A K, Kondo M, Dewa, T and Tanemura M 2018 Phys. Status Solidi-R 12 1800198
[90] Zhou N, Gan L, Yang R, Wang F, Li L, Chen Y, Li D and Zhai T 2019 ACS Nano 13 6297
[91] Lu J, Zheng Z, Gao W, Yao J, Zhao Y, Xiao Y, Wang B and Li J 2019 J. Mater. Chem. C 7 12104
[92] Zhu D D, Xia J, Wang L, Li X Z, Tian L F and Meng X M 2016 Nanoscale 8 11375
[93] Wang Q, Xu K, Wang Z, Wang F, Huang Y, Safdar M, Zhan X, Wang F, Cheng Z and He J 2015 Nano Lett. 15 1183
[94] Wang Q, Wang F, Li J, Wang Z, Zhan X and He J 2015 Small 11 4613
[95] Zheng W, Feng W, Zhang X, Chen X, Liu G, Qiu Y, Hasan T, Tan P and Hu P A 2016 Adv. Funct. Mater. 26 2648
[96] Schornbaum J, Winter B, Schießl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E and Zaumseil J 2014 Adv. Funct. Mater. 24 5798
[97] Wang Q, Wen Y, Yao F, Huang Y, Wang Z, Li M, Zhan X, Xu K, Wang F, Wang F, Li J, Liu K, Jiang C, Liu F and He J 2015 Small 11 5388
[98] Cheng R, Wen Y, Yin L, Wang F, Wang F, Liu K, Shifa T A, Li J, Jiang C, Wang Z and He J 2017 Adv. Mater. 29 1703122
[99] Zhu D D, Xia J, Wang L, Li X Z, Tian L F and Meng X M 2016 Nanoscale 8 11375
[100] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W and Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714
[101] Jiang W, Zheng T, Wu B, Jiao H, Wang X, Chen Y, Zhang X, Peng M, Wang H, Lin T, Shen H, Ge J, Hu W, Xu X, Meng X, Chu J and Wang J 2020 Light: Sci. Appl. 9 1
[102] Oliva N, Casu E A, Yan C, Krammer A, Rosca T, Magrez A, Stolichnov I, Schueler A, Martin O J F and Ionescu A M 2017 ACS Appl. Mater. Interfaces 9 26325
[103] Zhang X, Li J, Ma Z, Zhang J, Leng B and Liu B 2020 ACS Appl. Mater. Interfaces 12 47721
[104] Lu J, Wei A, Zhao Y, Tao L, Yang Y, Zheng Z, Wang H, Luo D, Liu J, Tao L, Li H, Li J and Xu J B 2018 ACS Photon. 5 4912
[105] Lu J, Zheng Z, Yao J, Gao W, Zhao Y, Xiao Y and Li J 2019 Small 15 1904912
[106] Yadava N and Chauhan R K 2019 ECS J. Solid State Sci. Technol. 8 Q3058
[107] Choi W, Ahn J, Kim K T, Jin H J, Hong S, Hwang D K and Im S 2021 Adv. Mater. 2021 e2103079
[108] Lei M Y, Liu C M, Zhou Y G, Yan Z H, Han S B, Liu W, Xiang X and Zu X T 2016 Chin. J. Phys. 54 51
[109] Su B, He H and Ye Z 2019 Mater. Lett. 253 187
[110] Weng J and Gao S P 2019 RSC Adv. 9 32984
[111] Zhou J, Xie M, Ji H, Cui A, Ye Y, Jiang K, Shang L, Zhang J, Hu Z and Chu J 2020 ACS Appl. Mater. Interfaces 12 18674
[112] Bi K, Wan Q, Shu Z, Shao G, Jin Y, Zhu M, Lin J, Liu H, Liu H, Chen Y, Liu S, Duan H 2020 Sci. China Mater. 63 1076
[113] Oh S, Kim C K and Kim J 2018 ACS Photon. 5 1123
[114] Liu Z, You L, Faraji N, Lin C H, Xu X, He J H, Seidel J and Wang J 2020 Adv. Funct. Mater. 30 1909672
[115] Zhang X, Zhang Z, Liang J, Zhou Y, Tong Y, Wang Y and Wang X 2017 J. Mater. Chem. A 5 9702
[116] Zhao S, Wang Y, Zhang Q, Li Y, Gu L, Dai Z, Liu S, Lan Y Q, Han M and Bao J 2016 Inorg. Chem. Front. 3 1501
[117] Yang Q, Tan C J, Meng R S, Jiang J K, Liang Q H, Sun X, Yang D G and Chen X 2017 IEEE Electron Dev. Lett. 38 145
[118] Yang Q, Zhang S, Tan C, Ye H, Ming X, Ingebrandt S and Chen X 2017 J. Mater. Chem. C 5 9412
[119] Kumar S, Maivizhikannan V, Drews J and Krishnan V 2019 Vacuum 163 88
[120] Rahimi K, Moradi M, Dehghan R and Yazdani A 2019 Mater. Lett. 234 134
[121] Selvaraj R, Kalimuthu K R and Kalimuthu V 2019 Mater. Lett. 243 183
[122] Chen J, Wu X J, Lu Q, Zhao M, Yin P F, Ma Q, Nam G H, Li B, Chen B and Zhang H 2021 Small 17 2006135
[123] Mojaddami M and Simchi A 2020 Renew. Energ. 162 504
[124] Harish S, Prachi, Archana J, Navaneethan M, Shimomura M, Ikeda H and Hayakawa Y 2019 Appl. Surf. Sci. 488 36
[1] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[2] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[3] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[4] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[5] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[6] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[7] Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures
Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波). Chin. Phys. B, 2021, 30(11): 117506.
[8] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[9] Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures
Zhang Zhou(周璋), Liangmei Wu(吴良妹), Jiancui Chen(陈建翠), Jiajun Ma(马佳俊), Yuan Huang(黄元), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(11): 118501.
[10] An improved arctangent algorithm based on phase-locked loop for heterodyne detection system
Chun-Hui Yan(晏春回), Ting-Feng Wang(王挺峰), Yuan-Yang Li(李远洋), Tao Lv(吕韬), Shi-Song Wu(吴世松). Chin. Phys. B, 2019, 28(3): 030701.
[11] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[12] Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure
Xin-Wu Zhang(张心悟), Da-Wei He(何大伟), Jia-Qi He(何佳琪), Si-Qi Zhao(赵思淇), Sheng-Cai Hao(郝生财), Yong-Sheng Wang(王永生), Li-Xin Yi(衣立新). Chin. Phys. B, 2017, 26(9): 097202.
[13] A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure
Li Xie(谢立), Luojun Du(杜罗军), Xiaobo Lu(卢晓波), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2017, 26(8): 087306.
[14] One-dimensional ZnO nanostructure-based optoelectronics
Zheng Zhang(张铮), Zhuo Kang(康卓), Qingliang Liao(廖庆亮), Xiaomei Zhang(张晓梅), Yue Zhang(张跃). Chin. Phys. B, 2017, 26(11): 118102.
[15] Ce–Co-doped BiFeO3 multiferroic for optoelectronic and photovoltaic applications
Jyoti Sharma, Deepak Basrai, A K Srivastava. Chin. Phys. B, 2017, 26(11): 116201.
No Suggested Reading articles found!