|
|
Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures |
Haixin Ma(马海鑫)1, Yanhui Xing(邢艳辉)1,†, Boyao Cui(崔博垚)1, Jun Han(韩军)1, Binghui Wang(王冰辉)1, and Zhongming Zeng(曾中明)2,3 |
1. Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, China; 2. Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China; 3. Nanchang Nano-Devices and Technologies Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China |
|
|
Abstract With the development of Moore's law, the future trend of devices will inevitably be shrinking and integration to further achieve size reduction. The emergence of new two-dimensional non-layered materials (2DNLMs) not only enriches the 2D material family to meet future development, but also stimulates the global enthusiasm for basic research and application technologies in the 2D field. Van der Waals (vdW) heterostructures, in which two-dimensional layered materials (2DLMs) are physically stacked layer by layer, can also occur between 2DLMs and 2DNLMs hybrid heterostructures, providing an alternative platform for nanoelectronics and optoelectronic applications. Here, we outline the recent developments of 2DLMs/2DNLMs hybrid heterostructures, with particular emphasis on major advances in synthetic methods and applications. And the categories and crystal structures of 2DLMs and 2DNLMs are also shown. We highlight some promising applications of the heterostructures in electronics, optoelectronics, and catalysis. Finally, we provide conclusions and future prospects in the 2D materials field.
|
Received: 22 November 2021
Revised: 06 February 2022
Accepted manuscript online:
|
PACS:
|
85.60.-q
|
(Optoelectronic devices)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
Fund: Project supported by the National Natural Science Fundation of China (Grant Nos. 61731019, 60908012, 61575008, and 61775007) and the Beijing Natural Science Foundation (Grant Nos. 4182015 and 4202010). |
Corresponding Authors:
Yanhui Xing
E-mail: xingyanhui@bjut.edu.cn
|
Cite this article:
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明) Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures 2022 Chin. Phys. B 31 108502
|
[1] Zeng J W, Liang S J, Gao A, Wang Y, Pan C, Wu C, Liu E, Zhang L, Cao T, Liu X, Fu Y, Wang Y, Watanabe K, Taniguchi T, Lu H and Miao F 2018 Phys. Rev. B 98 125414 [2] Wang F, Wang Z, Shifa T A, Wen Y, Wang F, Zhan X, Wang Q, Xu K, Huang Y, Yin L, Jiang C and He J 2017 Adv. Funct. Mater. 27 1603254 [3] Cheng Y, Wang J Z, Wei X X, Guo D, Wu B, Yu L W, Wang X R and Shi Y 2015 Chin. Phys. Lett. 32 117801 [4] Sun S, Dang J, Xie X, Yu Y, Yang L, Xiao S, Wu S, Peng K, Song F, Wang Y, Yang J, Qian C, Zuo Z and Xu X 2020 Chin. Phys. Lett. 37 087801 [5] Wang J H, Quan Y M, Liu D Y and Zou L J 2020 Chin. Phys. Lett. 37 017101 [6] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593 [7] Zhang M L, Zou X M and Liu X Q 2020 Chin. Phys. Lett. 37 118501 [8] Xiao R C, Wang Z, Zhang Z Q, Liu J and Jiang H 2021 Chin. Phys. Lett. 38 057301 [9] Zhou S H, Zhou C W, Yang X D, Li Y, Zhong J Q and Mao H Y 2021 Chin. Phys. Lett. 38 057305 [10] Zhang Y, Wang X X and Shi L J 2020 J. Phys: Condens Matter 33 115301 [11] Liu J, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y and Lei W 2020 ACS Appl. Mater. Interfaces 12 31810 [12] Zhou N, Yang R and Zhai T 2019 Mater. Today Nano 8 100051 [13] Shin G H, Park C, Lee K J, Jin H J and Choi S Y 2020 Nano Lett. 20 5741 [14] Murali K, Abraham N, Das S, Kallatt S and Majumdar K H 2019 ACS Appl. Mater. Interfaces 11 30010 [15] Huang Z, Jiang Y, Han Q, Yang M, Han J, Wang F, Luo M, Li Q, Zhu H, Liu X, Gou J and Wang J 2020 Nanotechnology 31 064001 [16] Mukherjee S, Dutta D, Mohapatra P K, Dezanashvili L, Ismach A and Koren E 2020 ACS Nano 14 17543 [17] Wu Z, Jie W, Yang Z and Hao, J 2020 Mater. Today Nano 12 100092 [18] Zheng Z, Yao J, Li J and Yang G 2020 Mater. Horizons 7 2185 [19] Wang F, Wang Z, Wang Q, Wang F, Yin L, Xu K, Huang Y and He J 2015 Nanotechnology 26 292001 [20] Wang H, Strait J H, George P A, Shivaraman S, Shields V B, Chandrashekhar M, Hwang J, Rana F, Spencer M G, Ruiz-Vargas C S and Park J 2010 Appl. Phys. Lett. 96 081917 [21] Graham M W, Shi S F, Ralph D C, Park J and McEuen P L 2013 Nat. Phys. 9 103 [22] Jiang X, Zhao J and Ahuja R 2013 J. Phys: Condens. Matter 25 122204 [23] Li L, Wang W K, Chai Y, Li H Q, Tian M L and Zhai T Y 2017 Adv. Funct. Mater. 27 1701011 [24] Bai X D, Wang E G, Yu J and Yang H 2000 Appl. Phys. Lett. 77 67 [25] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [26] Xie Y, Wu E, Zhang J, Hu X, Zhang D and Liu J 2019 ACS Appl. Mater. Interfaces 11 14215 [27] Xie Y, Zhang B, Wang S, Wang D, Wang A, Wang Z, Yu H, Zhang H, Chen Y, Zhao M, Huang B, Mei L and Wang J 2017 Adv. Mater. 29 1605972 [28] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702 [29] Afzaal M and O'Brien P 2006 J. Mater. Chem. 16 1597 [30] Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T and Gao X P 2015 Nano. Lett. 15 3815 [31] Zhao H, Mao Y, Mao X, Shi X, Xu C, Wang C, Zhang S and Zhou, D 2017 Adv. Funct. Mater. 28 1704855 [32] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 [33] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970 [34] Han M, Ma J, Xu H and Liu Y 2015 CrystEngComm 17 8449 [35] Chithambararaj A, Rajeswari Yogamalar N and Bose A C 2016 Cryst. Growth Des. 16 1984 [36] Li W, Cheng F, Tao Z and Chen J 2006 J. Phys. Chem. B 110 119 [37] Coquet R and Willock D J 2005 Phys. Chem. Chem. Phys. 7 3819 [38] Gu Y Y, Wang Y F, Xia J and Meng X M 2020 Chin. Phys. Lett. 37 048101 [39] Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166 [40] Yang M, Shu H, Tang P, Liang P, Cao D and Chen X 2013 ACS Appl. Mater. Interfaces 13 8764 [41] Sun X, Shi L, Huang H, Song X and Ma T 2020 Chem. Commun. 56 11000 [42] Tian Z, Wei C and Sun J 2020 Nanoscale Adv. 2 2220 [43] Zhang Q, Hu Y, Guo S, Goebl Ja and Yin Y 2010 Nano Lett. 10 5037 [44] Barman S K and Huda M N 2019 Phys. Status solidi- R 13 1800554 [45] Kim J, Oh S, Mastro M A and Kim J 2016 Phys. Chem. Chem. Phys. 18 15760 [46] Hwang W S, Verma A, Peelaers H, Protasenko V, Rouvimov S, Xing H, Seabaugh A, Haensch W, De Walle C V, Galazka Z, Albrecht M, Fornari R and Jena D 2014 Appl. Phys. Lett. 104 203111 [47] Du Y, Xue Q, Zhang Z, Xia F, Li J and Han Z 2013 Sensors Actuat B-Chem. 186 796 [48] Zhang C, Xu Y, Lu P, Wei C, Zhu C, Yao H, Xu F and Shi J 2019 Angew. Chem. Int. Ed. 58 8814 [49] Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J and Li Y 2014 Nat. Commun. 5 1 [50] Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J and Xie Y 2016 Nature 529 68 [51] Mohite S V, Ganbavle V V and Rajpure K Y 2017 Mater. Res. Bull. 95 491 [52] Liu J, Lin X, Sun M, Du B, Li L, Bai J and Zhou M 2020 Talanta 219 121323 [53] Lin Y, Hu H and Hu Y H 2020 Appl. Surf. Sci. 502 144202 [54] Lin X, Yan P, Xu F, Wu W, Hu T, Wei C and Xu Q 2019 J. Mater. Chem. C 7 7196 [55] Mohiuddin M, Zavabeti A, Haque F, Mahmood A, Datta R S, Syed N, Khan M W, Jannat A, Messalea K, Zhang B Y, Chen G, Zhang H, Ou J Z and Mahmood N 2020 J. Mater. Chem. A 8 2789 [56] Wang F, Yu Y, Yin X, Tian P and Wang X 2017 J. Mater. Chem. A 5 9060 [57] Feng W, Wang X, Zhang J, Wang L, Zheng W, Hu P, Cao W and Yang B 2014 J. Mater. Chem. C 2 3254 [58] Wen Y, Wang Q, Yin L, Liu Q, Wang F, Wang F, Wang Z, Liu K, Xu K, HuangY, Shifa T A, Jiang C, Xiong J and He J 2016 Adv. Mater. 28 8051 [59] Zhao X, Qing Y, Huang H, Yu Q, Liu B, Yang J, Dong Z, Shen Z, Zhu B and Liao L 2021 Nano Research 14 1955 [60] Lu J, Zheng Z, Yao J, Gao W, Xiao Y, Zhang M and Li J 2020 Nanoscale 12 7196 [61] Chu J, Zhang Y, Wen Y, Qiao R, Wu C, He P, Yin L, Cheng R, Wang F, Wang Z, Xiong J, Li Y and He J 2019 Nano Lett. 19 2154 [62] Sun Y, Sun Z, Gao S, Cheng H, Liu Q, Piao J, Yao T, Wu C, Hu S, Wei S and Xie Y 2012 Nat. Commun. 3 1057 [63] Wang Q, Cai K, Li J, Huang Y, Wang Z, Xu K, Wang F, Zhan X, Wang F, Wang K and He J 2016 Adv. Mater. 28 617 [64] Che Y, Liu K, Liu J, Lv T, Wei B, Zhang T, Zeng M, Wang Z and Fu L 2018 J. Am. Chem. Soc. 140 16392 [65] Wang D, Chen X, Fang X, Tang J, Lin F, Wang X, Liu G, Liao L, Ho J C and Wei Z 2021 Nanoscale 13 1086 [66] Bai Y, Zhang H, Zhang M, Wang D, Zeng H, Zhao J, Xue H, Wu G, Su J, Xie Y, Zhang Y, Jing H, Yu H, Hu Z, Peng R, Wang M and Wu Y 2020 Nanoscale 12 1100 [67] Chai R, Chen Y, Zhong M, Yang H, Yan F, Peng M, Sun Y, Wang K, Wei Z, Hu W, Liu Q, Lou Z and Shen G 2020 J. Mater. Chem. C 8 6388 [68] Liu B, Wang Y, Peng H Q, Yang R, Jiang Z, Zhou X, Lee C S, Zhao H and Zhang W 2018 Adv. Mater. 30 1803144 [69] Yao K, Chen P, Zhang Z, Li J, Ai R, Ma H, Zhao B, Sun G, Wu R, Tang X, Li B, Hu J, Duan X and Duan X 2018 npj 2D Mater. Appl. 2 1 [70] Feng W, Zhao Y, Zhao D, Wang W, Xia Z, Zheng X, Wang X, Wang W and Wang W 2021 RSC Adv. 11 3673 [71] Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P L, Constantinescu G C, Kandyba V, Barinov A, Hine N D M, Xu X and Cobden D H 2017 Sci. Adv. 3 e1601832 [72] Feng W, Zheng W, Chen X, Liu G, Cao W and Hu P 2015 Chem. Mater. 27 983 [73] Yang Z and Hao J 2016 J. Mater. Chem. C 4 8859 [74] Zhou J 2019 Appl. Phys. Lett. 115 162104 [75] Zheng Z, Yao J and Yang G 2017 ACS Appl. Mater. Interfaces 9 7288 [76] Wang Q, Wen Y, He P, Yin Ll Wang Z, Wang F, Xu K, Huang Y, Wang F, Jiang C and He J 2016 Adv. Mater. 28 6497 [77] Wen Y, Yin L, He P, Wang Z, Zhang X, Wang Q, Shifa T A, Xu K, Wang F, Zhan X, Wang F, Jiang C and He J 2016 Nano Lett. 16 6437 [78] Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H and PatanéA 2017 2D Mater. 4 025043 [79] Ren D, Merdrignac-Conanec O, Dorcet V, Cathelinaud M, Zheng Z, Ma H and Zhang X 2020 Ceram. Int. 46 25503 [80] Kim S, Oh S and Kim J 2019 ACS Photon. 6 1026 [81] Yan X, Esqueda I S, Ma J, Tice J and Wang H 2018 Appl. Phys. Lett. 112 032101 [82] Kim J, Mastro M A, Tadjer M J and Kim J 2018 ACS Appl. Mater. Interfaces 10 29724 [83] Kim J, Mastro M A, Tadjer M J and Kim J 2017 ACS Appl. Mater. Interfaces 9 21322 [84] Puthirath Balan A, Radhakrishnan S, Woellner C F, Sinha S K, Deng L, Reyes C D L, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Martí A A, Van Aken P A, Varghese O K, Tiwary C S, Malie Madom Ramaswamy Iyer A and Ajayan P M 2018 Nat. Nanotechnol. 13 602 [85] Kim J and Kim J 2020 ACS Appl. Mater. Interfaces 12 7310 [86] Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y and Li X 2018 J. Mater. Chem. C 6 10982 [87] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725 [88] Chemelewski W D, Lee H C, Lin J F, Bard A J and Mullins C B 2014 J. Am. Chem. Soc 136 2843 [89] Kalita G, Mahyavanshi R D, Desai P, Ranade A K, Kondo M, Dewa, T and Tanemura M 2018 Phys. Status Solidi-R 12 1800198 [90] Zhou N, Gan L, Yang R, Wang F, Li L, Chen Y, Li D and Zhai T 2019 ACS Nano 13 6297 [91] Lu J, Zheng Z, Gao W, Yao J, Zhao Y, Xiao Y, Wang B and Li J 2019 J. Mater. Chem. C 7 12104 [92] Zhu D D, Xia J, Wang L, Li X Z, Tian L F and Meng X M 2016 Nanoscale 8 11375 [93] Wang Q, Xu K, Wang Z, Wang F, Huang Y, Safdar M, Zhan X, Wang F, Cheng Z and He J 2015 Nano Lett. 15 1183 [94] Wang Q, Wang F, Li J, Wang Z, Zhan X and He J 2015 Small 11 4613 [95] Zheng W, Feng W, Zhang X, Chen X, Liu G, Qiu Y, Hasan T, Tan P and Hu P A 2016 Adv. Funct. Mater. 26 2648 [96] Schornbaum J, Winter B, Schießl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E and Zaumseil J 2014 Adv. Funct. Mater. 24 5798 [97] Wang Q, Wen Y, Yao F, Huang Y, Wang Z, Li M, Zhan X, Xu K, Wang F, Wang F, Li J, Liu K, Jiang C, Liu F and He J 2015 Small 11 5388 [98] Cheng R, Wen Y, Yin L, Wang F, Wang F, Liu K, Shifa T A, Li J, Jiang C, Wang Z and He J 2017 Adv. Mater. 29 1703122 [99] Zhu D D, Xia J, Wang L, Li X Z, Tian L F and Meng X M 2016 Nanoscale 8 11375 [100] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W and Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714 [101] Jiang W, Zheng T, Wu B, Jiao H, Wang X, Chen Y, Zhang X, Peng M, Wang H, Lin T, Shen H, Ge J, Hu W, Xu X, Meng X, Chu J and Wang J 2020 Light: Sci. Appl. 9 1 [102] Oliva N, Casu E A, Yan C, Krammer A, Rosca T, Magrez A, Stolichnov I, Schueler A, Martin O J F and Ionescu A M 2017 ACS Appl. Mater. Interfaces 9 26325 [103] Zhang X, Li J, Ma Z, Zhang J, Leng B and Liu B 2020 ACS Appl. Mater. Interfaces 12 47721 [104] Lu J, Wei A, Zhao Y, Tao L, Yang Y, Zheng Z, Wang H, Luo D, Liu J, Tao L, Li H, Li J and Xu J B 2018 ACS Photon. 5 4912 [105] Lu J, Zheng Z, Yao J, Gao W, Zhao Y, Xiao Y and Li J 2019 Small 15 1904912 [106] Yadava N and Chauhan R K 2019 ECS J. Solid State Sci. Technol. 8 Q3058 [107] Choi W, Ahn J, Kim K T, Jin H J, Hong S, Hwang D K and Im S 2021 Adv. Mater. 2021 e2103079 [108] Lei M Y, Liu C M, Zhou Y G, Yan Z H, Han S B, Liu W, Xiang X and Zu X T 2016 Chin. J. Phys. 54 51 [109] Su B, He H and Ye Z 2019 Mater. Lett. 253 187 [110] Weng J and Gao S P 2019 RSC Adv. 9 32984 [111] Zhou J, Xie M, Ji H, Cui A, Ye Y, Jiang K, Shang L, Zhang J, Hu Z and Chu J 2020 ACS Appl. Mater. Interfaces 12 18674 [112] Bi K, Wan Q, Shu Z, Shao G, Jin Y, Zhu M, Lin J, Liu H, Liu H, Chen Y, Liu S, Duan H 2020 Sci. China Mater. 63 1076 [113] Oh S, Kim C K and Kim J 2018 ACS Photon. 5 1123 [114] Liu Z, You L, Faraji N, Lin C H, Xu X, He J H, Seidel J and Wang J 2020 Adv. Funct. Mater. 30 1909672 [115] Zhang X, Zhang Z, Liang J, Zhou Y, Tong Y, Wang Y and Wang X 2017 J. Mater. Chem. A 5 9702 [116] Zhao S, Wang Y, Zhang Q, Li Y, Gu L, Dai Z, Liu S, Lan Y Q, Han M and Bao J 2016 Inorg. Chem. Front. 3 1501 [117] Yang Q, Tan C J, Meng R S, Jiang J K, Liang Q H, Sun X, Yang D G and Chen X 2017 IEEE Electron Dev. Lett. 38 145 [118] Yang Q, Zhang S, Tan C, Ye H, Ming X, Ingebrandt S and Chen X 2017 J. Mater. Chem. C 5 9412 [119] Kumar S, Maivizhikannan V, Drews J and Krishnan V 2019 Vacuum 163 88 [120] Rahimi K, Moradi M, Dehghan R and Yazdani A 2019 Mater. Lett. 234 134 [121] Selvaraj R, Kalimuthu K R and Kalimuthu V 2019 Mater. Lett. 243 183 [122] Chen J, Wu X J, Lu Q, Zhao M, Yin P F, Ma Q, Nam G H, Li B, Chen B and Zhang H 2021 Small 17 2006135 [123] Mojaddami M and Simchi A 2020 Renew. Energ. 162 504 [124] Harish S, Prachi, Archana J, Navaneethan M, Shimomura M, Ikeda H and Hayakawa Y 2019 Appl. Surf. Sci. 488 36 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|