CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-damage interface enhancement-mode AlN/GaN high electron mobility transistors with 41.6% PAE at 30 GHz |
Si-Yu Liu(刘思雨)1, Jie-Jie Zhu(祝杰杰)1,†, Jing-Shu Guo(郭静姝)1, Kai Cheng(程凯)2, Min-Han Mi(宓珉瀚)1, Ling-Jie Qin(秦灵洁)1, Bo-Wen Zhang(张博文)1, Min Tang(唐旻)3, and Xiao-Hua Ma(马晓华)1,‡ |
1 Key Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 Enkris Semiconductor, Inc., Suzhou 215123, China; 3 State Key Discipline Laboratory of Radio Frequency Heterogeneous Interation, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract This paper reports a low-damage interface treatment process for AlN/GaN high electron mobility transistor (HEMT) and demonstrates the excellent power characteristics of radio-frequency (RF) enhancementmode (E-mode) AlN/GaN HEMT. An RF E-mode device with 2.9-nm-thick AlN barrier layer fabricated by remote plasma oxidation (RPO) treatment at 300 °C. The device with a gate length of 0.12-μ m has a threshold voltage (Vth) of 0.5 V, a maximum saturation current of 1.16 A/mm, a high Ion/Ioff ratio of 1× 108, and a 440-mS/mm peak transconductance. During continuous wave (CW) power testing, the device demonstrates that at 3.6 GHz, a power added efficiency is 61.9% and a power density is 1.38 W/mm, and at 30 GHz, a power added efficiency is 41.6% and a power density is 0.85 W/mm. Furthermore, the RPO treatment improves the mobility of RF E-mode AlN/GaN HEMT. All results show that the RPO processing method has good applicability to scaling ultrathin barrier E-mode AlN/GaN HEMT for 5G compliable frequency ranging from sub-6 GHz to Ka-band.
|
Received: 13 April 2023
Revised: 04 May 2023
Accepted manuscript online: 25 May 2023
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
81.65.Mq
|
(Oxidation)
|
|
Fund: Project supported by the Fundamental Research Funds for the National Key Research and Development Program, China (Grant No. 2020YFB1807403) and the National Natural Science Foundation of China (Grant Nos. 62174125, 62188102, and 62131014). |
Corresponding Authors:
Jie-Jie Zhu, Xiao-Hua Ma
E-mail: jjzhu@mail.xidian.edu.cn;xhma@xidian.edu.cn
|
Cite this article:
Si-Yu Liu(刘思雨), Jie-Jie Zhu(祝杰杰), Jing-Shu Guo(郭静姝), Kai Cheng(程凯), Min-Han Mi(宓珉瀚), Ling-Jie Qin(秦灵洁), Bo-Wen Zhang(张博文), Min Tang(唐旻), and Xiao-Hua Ma(马晓华) Low-damage interface enhancement-mode AlN/GaN high electron mobility transistors with 41.6% PAE at 30 GHz 2023 Chin. Phys. B 32 117302
|
[1] Kong Y, Zhou J, Kong C, et al. 2014 IEEE Electron Dev. Lett. 35 336 [2] Maroldt S, Haupt C, Pletschen W, et al. 2009 Jpn. J. Appl. Phys. 48 04C083 [3] Zhou Y, Zhu J, Mi M, et al. 2021 IEEE J. Electron Dev. 9 756 [4] Xie H, Liu Z, Hu W, et al. 2021 IMWS-AMP. 2 397 [5] Xie H, Liu Z, Hu W, et al. 2020 IEEE Microw. Wirel. Co. 31 141 [6] Fujii K and Morkner H 2003 IEEE MTT-S Int. Microw. Symp. Dig. 2 859 [7] Feng Z H, Zhou R, Xie S Y, et al. 2010 IEEE Electron Dev. Lett. 31 1386 [8] Huang S, Liu X, Zhang J, et al. 2015 IEEE Electron Dev. Lett. 36 754 [9] Kong Y, Zhou J and Kong C 2014 IEEE Electron Dev. Lett. 35 336 [10] Zhou Q, Chen W, Liu S, et al. 2013 25$th International Symposium on Power Semiconductor Devices & IC's (ISPSD), Kanazawa, Japan, 2013, pp. 195-198 [11] Anderson T J, Koehler A D, Greenlee J D, et al. 2014 IEEE Electron Dev. Lett. 35 826 [12] Guerra D, Akis R, Marino F A, et al. 2010 IEEE Electron Dev. Lett. 31 1217 [13] Radjenovic B M, Radmilovic-Radjenovic M D and Petrovic Z L 2008 IEEE T Plasma Sci. 36 874 [14] Denninghoff D J, Dasgupta S, Lu J, et al. 2012 IEEE Electron Dev. Lett. 33 785 [15] Wang R, Saunier P, Xing X, et al. 2010 IEEE Electron Dev. Lett. 31 1383 [16] Xiao M, Duan X, Zhang J, et al. 2018 IEEE Electron Dev. Lett. 39 719 [17] Liu S, Zhu J, Guo J, et al. 2022 IEEE Electron Dev. Lett. 43 1621 [18] Chang C Y, Pearton S J, Lo C F, et al. 2009 Appl. Phys. Lett. 94 263505 [19] Chang C Y, Lo C F, Ren F, et al. 2010 Phys. Status. Solidi-C 7 2415 [20] Lee D S, Chung J W, Wang H, et al. 2011 IEEE Electron Dev. Lett. 32 755 [21] Chung J W, Roberts J C, Piner E L, et al. 2008 IEEE Electron Dev. Lett. 29 1196 [22] Corrion A L, Shinohara K, Regan D, et al. 2010 IEEE Electron Dev. Lett. 31 1116 [23] Zine-eddine T, Zahra H and Zitouni M 2019 Sci-Adv. Mater. Dev. 4 180 [24] Then H W, Chow L A, Dasgupta S, et al. 2015 IEEE VLSI Technol. T202 [25] Feng Z H, Zhou R, Xie S Y, et al. 2010 IEEE Electron Dev. Lett. 31 1386 [26] Then H W, Dasgupta S, Radosavljevic M, et al. 2019 IEEE IEDM, San Francisco, CA, USA, 2019, pp. 17.3.1-17.3.4 [27] Xuan L T, Aubry R, Michel N, et al. 2016 IEEE EuMIC. 65 [28] Wang C, Chen Y C, Hsu H T, et al. 2021 Materials 14 6558 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|