Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 036803    DOI: 10.1088/1674-1056/aca6da
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations

Xiaoya Zhang(张晓雅)1, Yingjie Cheng(程莹洁)1, Chunyu Zhao(赵春宇)1, Jingwan Gao(高敬莞)1, Dongxiao Kan(阚东晓)2,†, Yizhan Wang(王义展)1, Duo Qi(齐舵)3, and Yingjin Wei(魏英进)1,‡
1 Key Laboratory of Physics and Technology for Advanced Batteries(Ministry of Education), College of Physics, Jilin University, Changchun 130012, China;
2 Advanced Materials Research Central, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China;
3 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
Abstract  Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li-S batteries. Our results demonstrate that FeCoN8@Gra not only possesses moderate adsorption energies towards Li2Sn species, but also exhibits superior catalytic activity for both reduction and oxidation reactions of the sulfur cathode. Moreover, the metallic property of the diatomic catalysts can be well maintained after Li2Sn adsorption, which could help the sulfur cathode to maintain high conductivity during the whole charge-discharge process. Given these exceptional properties, it is expected that FeCoN8@Gra could be a promising diatomic catalyst for Li-S batteries and afford insights for further development of advanced Li-S batteries.
Keywords:  Li-S battery      diatomic catalyst      polysulfides      first-principles calculations  
Received:  01 November 2022      Revised:  22 November 2022      Accepted manuscript online:  29 November 2022
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
  88.80.ff (Batteries)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51972140 and 51903164) and the Fund from Science and Technology Department of Jilin Province, China (Grant No. 20200201069JC).
Corresponding Authors:  Dongxiao Kan, Yingjin Wei     E-mail:  dxkan1202@126.com;yjwei@jlu.edu.cn

Cite this article: 

Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进) Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations 2023 Chin. Phys. B 32 036803

[1] Liu W, Liu W, Li X, Liu Y, Ogunmoroti A E, Li M, Bi M and Cui Z 2021 Resour. Conserv. Recycl. 164 105122
[2] Nitta N, Wu F, Lee J T and Yushin G 2015 Mater. Today 18 252
[3] Manthiram A, Fu Y, Chung S H, Zu C and Su Y S 2014 Chem. Rev. 114 11751
[4] Peng H J, Huang J Q, Cheng X B and Zhang Q 2017 Adv. Energy Mater. 7 1700260
[5] Liu D, Zhang C, Zhou G, Ling W Lv G, Zhi L and Yang Q H 2018 Adv. Sci. 5 1700270
[6] Yin Y X, Yao H R and Guo Y G 2016 Chin. Phys. B 25 018801
[7] Zhao J, Sun H, Dai S, Wang Y and Zhu J 2011 Nano Lett. 11 4647
[8] Zheng G, Yang Y, Cha J J, Hong S S and Cui Y 2011 Nano Lett. 11 4462
[9] Chen H L, Xiao Z J, Zhang N, Xiao S Q, Xia X G, Xi W, Wang Y C, Zhou W Y and Xie S S 2018 Chin. Phys. B 27 068101
[10] Wang D, Zhao S, Li F, He L, Zhao Y, Zhao H, Liu Y, Wei Y and Chen G 2019 ChemSusChem 12 4671
[11] Wang Z, Niu X, Xiao J, Wang C, Liu J and Gao F 2013 RSC Adv. 3 16775
[12] Xie Y, Meng Z, Cai T and Han W Q 2015 ACS Appl. Mater. 7 25202
[13] Wang D, Li F, Lian R, Xu J, Kan D, Liu Y, Chen G, Gogotsi Y and Wei Y 2019 ACS Nano 13 11078
[14] Chen X, Bai Y K, Zhao C Z, Shen X and Zhang Q 2020 Angew. Chem. Int. Ed. 59 11192
[15] Han X, Zhang Z and Xu X 2021 J. Mater. Chem. A 9 12225
[16] Zhou G, Zhao S, Wang T, Yang S Z, Johannessen B, Chen H, Liu C, Ye Y, Wu Y, Peng Y, Liu C, Jiang S P, Zhang Q and Cui Y 2020 Nano Lett. 20 1252
[17] Du Z, Chen X, Hu W, Chuang C, Xie S, Hu A, Yan W, Kong X, Wu X, Ji H and Wan L J 2019 J. Am. Chem. Soc. 141 3977
[18] Lin Q, Ding B, Chen S, Li P, Li Z, Shi Y, Dou H and Zhang X 2020 ACS Appl. Energy Mater. 3 11206
[19] Ma C, Zhang Y, Feng Y, Wang N, Zhou L, Liang C, Chen L, Lai Y, Ji X, Yan C and Wei W 2021 Adv. Mater. 33 2100171
[20] Ji S, Chen Y, Wang X, Zhang Z, Wang D and Li Y 2020 Chem. Rev. 120 11900
[21] Zhang J, Huang Q A, Wang J, Wang J, Zhang J and Zhao Y 2020 Chin. J. Catal. 41 783
[22] Zhang L, Si R, Liu H, Chen N, Wang Q, Adair K, Wang Z, Chen J, Song Z, Li J, Banis M N, Li R, Sham T K, Gu M, Liu L M, Botton G A and Sun X 2019 Nat. Commun. 10 4936
[23] Sun B, He D, Wang H B, Liu J C, Ke Z J, Cheng L and Xiao X H 2021 Chin. Phys. B 30 106102
[24] Meng Y, Li K, Xiao D, Yuan Y, Wang Y and Wu Z 2020 Int. J. Hydrog. 45 14311
[25] Hunter M A, Fischer J M T A, Yuan Q, Hankel M and Searles D J 2019 ACS Catal. 9 7660
[26] Yang L, Ma X, Xu Y Y, Xu J Y and Song Y D 2020 Int. J. Electrochem. Sci. 15 9698
[27] Lv P, Wu D H, He B L, Li X, Zhu R, Tang G, Lu Z S, Ma D W and Jia Y 2022 J. Mater. Chem. A 10 9707
[28] Li H L, Wang L B, Dai Y Z, Pu Z T, Lao Z H, Chen Y W, Wang M L, Zheng X S, Zhu J F, Zhang W H, Si R, Ma C and Zeng J 2018 Nat. Nanotechnol. 13 411
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Perdew J, Chevary J, Vosko S, Jackson K, Pederson, Singh D and Fiolhais C 1992 Phys. Rev. B 46 6671
[31] Chadi D J 1976 Phys. Rev. B 13 5188
[32] Zhang J, Huang Q A, Wang J, Wang J, Zhang J and Zhao Y 2018 J. Mater. Chem. A 6 2107
[33] Ma D, Wang Y, Liu L and Jia Y 2021 Phys. Chem. Chem. Phys. 23 4018
[34] Xiao W S, He Q and Zhao Y 2021 Appl. Surf. Sci. 570 151213
[35] Zeng Q W, Hu R M, Chen Z B and Shang J X 2019 Mater. Res. Express 6 095620
[36] Lei B, Zhang Y Y and Du S X 2020 Chin. Phys. B 29 058104
[37] Zhao C, Xu G L, Yu Z, Zhang L, Wang I H, Mo Y X, Ren Y, Cheng L, Sun C J, Ren Y, Zuo X, Li J T, Sun S G, Amine K and Zhao T 2020 Nat. Nanotechnol. 16 166
[38] Xiao J, Hu J Z, Chen H, Vijayakumar M, Zheng J, Pan H, Walter E D, Hu M, Deng X, Feng J, Liaw B Y, Gu M, Deng Z D, Lu D, Xu S, Wang C and Liu J 2015 Nano Lett. 15 3309
[39] Zhang L, Liang P, Shu H B, Man X L, Du X Q, Chao D L, Liu Z G, Sun Y P, Wan H Z and Wang H 2018 J. Colloid Interface Sci. 529 426
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[10] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[11] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[12] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[13] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[14] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[15] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
No Suggested Reading articles found!