Special Issue:
SPECIAL TOPIC — The third carbon: Carbyne with one-dimensional sp-carbon
|
SPECIAL TOPIC—The third carbon: Carbyne with one-dimensional sp-carbon |
Prev
Next
|
|
|
Extraordinary mechanical performance in charged carbyne |
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢)†, and En-Lai Gao(高恩来)‡ |
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China |
|
|
Abstract Carbyne, the linear chain of carbon, promises the strongest and toughest material but possesses a Peierls instability (alternating single-bonds and triple-bonds) that reduces its strength and toughness. Herein, we computationally found that the gravimetric strength, strain-to-failure, and gravimetric toughness can be improved from 74 GPa·g-1·cm3, 18%, and 9.4 kJ·g-1 for pristine carbyne to the highest values of 106 GPa·g-1·cm3, 26%, and 19.0 kJ·g-1 for carbyne upon hole injection of +0.07 e/atom, indicating the charged carbyne with record-breaking mechanical performance. Based on the analyses of the atomic and electronic structures, the underlying mechanism behind the record-breaking mechanical performance was revealed as the suppressed and even eliminated bond alternation of carbyne upon charge injection.
|
Received: 06 April 2022
Revised: 22 June 2022
Accepted manuscript online: 27 June 2022
|
PACS:
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
36.20.Hb
|
(Configuration (bonds, dimensions))
|
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172261 and 11972263). The numerical calculations in this work have been performed on a supercomputing system in the Supercomputing Center of Wuhan University. Yongzhe Guo acknowledges the technical assistance from Chunbo Zhang and Xiangzheng Jia. |
Corresponding Authors:
Hao Yin, En-Lai Gao
E-mail: yinhao@whu.edu.cn;enlaigao@whu.edu.cn
|
Cite this article:
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来) Extraordinary mechanical performance in charged carbyne 2022 Chin. Phys. B 31 128102
|
[1] Wan F, Wang X R, Liao L H, Zhang J Y, Chen M N, Zhou G H, Siu Z B, Jalil M B A and Li Y 2022 Chin. Phys. B 31 077302 [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [3] Miao X Y, Ma H A, Zhang Z F, Chen L C, Zhou L J, Li M S and Jia X P 2021 Chin. Phys. B 30 068102 [4] Telling R H, Pickard C J, Payne M C and Field J E 2000 Phys. Rev. Lett. 84 5160 [5] Casari C S and Milani A 2018 MRS Commun. 8 207 [6] Hirsch A 2010 Nat. Mater. 9 868 [7] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075 [8] Mikhailovskij I M, Sadanov E V, Kotrechko S, Ksenofontov V A and Mazilova T I 2013 Phys. Rev. B 87 045410 [9] Li J P, Meng S H, Lu H T and Tohyama T 2018 Chin. Phys. B 27 117101 [10] Gao E, Guo Y, Wang Z, Nielsen S O and Baughman R H 2022 Matter 5 1192 [11] Zhan H and Gu Y 2018 Chin. Phys. B 27 038103 [12] Prenzel D, Kirschbaum R W, Chalifoux W A, McDonald R, Ferguson M J, Drewello T and Tykwinski R R 2017 Org. Chem. Front. 4 668 [13] Tykwinski R R, Chalifoux W, Eisler S, Lucotti A, Tommasini M, Fazzi D, Del Zoppo M and Zerbi G 2010 Pure Appl. Chem. 82 891 [14] Baughman R H 2006 Science 312 1009 [15] Webster A 1980 Mon. Notices Royal Astron. Soc. 192 7 [16] Goresy A E and Donnay G 1968 Science 161 363 [17] Hayatsu R, Scott R G, Studier M H, Lewis R S and Anders E 1980 Science 209 1515 [18] Whittaker A G, Watts E J, Lewis R S and Anders E 1980 Science 209 1512 [19] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P and Pichler T 2016 Nat. Mater. 15 634 [20] Jin C, Lan H, Peng L, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501 [21] Shi L, Senga R, Suenaga K, Chimborazo J, Ayala P and Pichler T 2021 Carbon 182 348 [22] Cannella C B and Goldman N 2015 J. Phys. Chem. C 119 21605 [23] Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R and Xu W 2016 J. Am. Chem. Soc. 138 1106 [24] Gao E, Li R and Baughman R H 2020 ACS Nano 14 17071 [25] Kotrechko S, Timoshevskii A, Kolyvoshko E, Matviychuk Y and Stetsenko N 2017 Nanoscale Res. Lett. 12 327 [26] Hou L, Hu H, Yang G and Ouyang G 2021 Phys. Status Solidi - Rapid Res. Lett. 15 2000582 [27] Faria B, Bernardes C E S, Silvestre N and Canongia Lopes J N 2020 Phys. Chem. Chem. Phys. 22 758 [28] Shao Q, Li R, Yue Z, Wang Y and Gao E 2021 Chem. Mater. 33 1276 [29] Banhart F 2015 Beilstein J. Nanotechnol. 6 559 [30] Kertesz M, Koller J and Aman A 1978 J. Chem. Phys. 68 2779 [31] Liu X, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 24156 [32] Artyukhov V I, Liu M and Yakobson B I 2014 Nano Lett. 14 4224 [33] Casari C S, Tommasini M, Tykwinski R R and Milani A 2016 Nanoscale 8 4414 [34] Rogers G W and Liu J Z 2011 J. Am. Chem. Soc. 133 10858 [35] Rogers G W and Liu J Z 2013 Appl. Phys. Lett. 102 021903 [36] Wu B, Cai X, Shui L, Gao E and Liu Z 2020 J. Phys. Chem. C 125 1060 [37] Wu B, Deng H X, Jia X, Shui L, Gao E and Liu Z 2020 npj Comput. Mater. 6 27 [38] Baughman R H, Cui C, Zakhidov A A, Iqbal Z, Barisci J N, Spinks G M, Wallace G G, Mazzoldi A, De Rossi D, Rinzler A G, Jaschinski O, Roth S and Kertesz M 1999 Science 284 1340 [39] Milani A, Lucotti A, Russo V, Tommasini M, Cataldo F, Li Bassi A and Casari C S 2011 J. Phys. Chem. C 115 12836 [40] Liu Y, Wang W, Wang A, Jin Z, Zhao H and Yang Y 2017 Electrochim. Acta 232 142 [41] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Filippi C, Singh D J and Umrigar C J 1994 Phys. Rev. B 50 14947 [44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [45] Puthur R and Sebastian K L 2002 Phys. Rev. B 66 024304 [46] Charan H, Hansen A, Hentschel H G E and Procaccia I 2021 Phys. Rev. Lett. 126 085501 [47] Maier W F, Lau G C and McEwen A B 1985 J. Am. Chem. Soc. 107 4724 [48] Santiago C, Houk K N, DeCicco G J and Scott L T 1978 J. Am. Chem. Soc. 100 692 [49] Zhang K, Zhang Y and Shi L 2020 Chin. Chem. Lett. 31 1746 [50] Szafert S and Gladysz J A 2006 Chem. Rev. 106 1 [51] Gao E and Xu Z 2015 J. Appl. Mech. 82 121012 [52] Yang S and Kertesz M 2006 J. Phys. Chem. A 110 9771 [53] Al-Backri A, Zolyomi V and Lambert C J 2014 J. Chem. Phys. 140 104306 [54] Mostaani E, Monserrat B, Drummond N D and Lambert C J 2016 Phys. Chem. Chem. Phys. 18 14810 [55] Manz T A 2017 RSC Adv. 7 45552 [56] Cahangirov S, Topsakal M and Ciraci S 2010 Phys. Rev. B 82 195444 [57] Gao E, Yuan X, Nielsen S O and Baughman R H 2022 Phys. Rev. Appl. 18 014044 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|