Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128102    DOI: 10.1088/1674-1056/ac7bf8
Special Issue: SPECIAL TOPIC — The third carbon: Carbyne with one-dimensional sp-carbon
SPECIAL TOPIC—The third carbon: Carbyne with one-dimensional sp-carbon Prev   Next  

Extraordinary mechanical performance in charged carbyne

Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来)
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
Abstract  Carbyne, the linear chain of carbon, promises the strongest and toughest material but possesses a Peierls instability (alternating single-bonds and triple-bonds) that reduces its strength and toughness. Herein, we computationally found that the gravimetric strength, strain-to-failure, and gravimetric toughness can be improved from 74 GPa·g-1·cm3, 18%, and 9.4 kJ·g-1 for pristine carbyne to the highest values of 106 GPa·g-1·cm3, 26%, and 19.0 kJ·g-1 for carbyne upon hole injection of +0.07 e/atom, indicating the charged carbyne with record-breaking mechanical performance. Based on the analyses of the atomic and electronic structures, the underlying mechanism behind the record-breaking mechanical performance was revealed as the suppressed and even eliminated bond alternation of carbyne upon charge injection.
Keywords:  charged carbyne      first-principles calculations      strength and toughness      bond alternation  
Received:  06 April 2022      Revised:  22 June 2022      Accepted manuscript online:  27 June 2022
PACS:  81.05.U- (Carbon/carbon-based materials)  
  36.20.Hb (Configuration (bonds, dimensions))  
  33.15.Fm (Bond strengths, dissociation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172261 and 11972263). The numerical calculations in this work have been performed on a supercomputing system in the Supercomputing Center of Wuhan University. Yongzhe Guo acknowledges the technical assistance from Chunbo Zhang and Xiangzheng Jia.
Corresponding Authors:  Hao Yin, En-Lai Gao     E-mail:  yinhao@whu.edu.cn;enlaigao@whu.edu.cn

Cite this article: 

Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来) Extraordinary mechanical performance in charged carbyne 2022 Chin. Phys. B 31 128102

[1] Wan F, Wang X R, Liao L H, Zhang J Y, Chen M N, Zhou G H, Siu Z B, Jalil M B A and Li Y 2022 Chin. Phys. B 31 077302
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Miao X Y, Ma H A, Zhang Z F, Chen L C, Zhou L J, Li M S and Jia X P 2021 Chin. Phys. B 30 068102
[4] Telling R H, Pickard C J, Payne M C and Field J E 2000 Phys. Rev. Lett. 84 5160
[5] Casari C S and Milani A 2018 MRS Commun. 8 207
[6] Hirsch A 2010 Nat. Mater. 9 868
[7] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075
[8] Mikhailovskij I M, Sadanov E V, Kotrechko S, Ksenofontov V A and Mazilova T I 2013 Phys. Rev. B 87 045410
[9] Li J P, Meng S H, Lu H T and Tohyama T 2018 Chin. Phys. B 27 117101
[10] Gao E, Guo Y, Wang Z, Nielsen S O and Baughman R H 2022 Matter 5 1192
[11] Zhan H and Gu Y 2018 Chin. Phys. B 27 038103
[12] Prenzel D, Kirschbaum R W, Chalifoux W A, McDonald R, Ferguson M J, Drewello T and Tykwinski R R 2017 Org. Chem. Front. 4 668
[13] Tykwinski R R, Chalifoux W, Eisler S, Lucotti A, Tommasini M, Fazzi D, Del Zoppo M and Zerbi G 2010 Pure Appl. Chem. 82 891
[14] Baughman R H 2006 Science 312 1009
[15] Webster A 1980 Mon. Notices Royal Astron. Soc. 192 7
[16] Goresy A E and Donnay G 1968 Science 161 363
[17] Hayatsu R, Scott R G, Studier M H, Lewis R S and Anders E 1980 Science 209 1515
[18] Whittaker A G, Watts E J, Lewis R S and Anders E 1980 Science 209 1512
[19] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P and Pichler T 2016 Nat. Mater. 15 634
[20] Jin C, Lan H, Peng L, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501
[21] Shi L, Senga R, Suenaga K, Chimborazo J, Ayala P and Pichler T 2021 Carbon 182 348
[22] Cannella C B and Goldman N 2015 J. Phys. Chem. C 119 21605
[23] Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R and Xu W 2016 J. Am. Chem. Soc. 138 1106
[24] Gao E, Li R and Baughman R H 2020 ACS Nano 14 17071
[25] Kotrechko S, Timoshevskii A, Kolyvoshko E, Matviychuk Y and Stetsenko N 2017 Nanoscale Res. Lett. 12 327
[26] Hou L, Hu H, Yang G and Ouyang G 2021 Phys. Status Solidi - Rapid Res. Lett. 15 2000582
[27] Faria B, Bernardes C E S, Silvestre N and Canongia Lopes J N 2020 Phys. Chem. Chem. Phys. 22 758
[28] Shao Q, Li R, Yue Z, Wang Y and Gao E 2021 Chem. Mater. 33 1276
[29] Banhart F 2015 Beilstein J. Nanotechnol. 6 559
[30] Kertesz M, Koller J and Aman A 1978 J. Chem. Phys. 68 2779
[31] Liu X, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 24156
[32] Artyukhov V I, Liu M and Yakobson B I 2014 Nano Lett. 14 4224
[33] Casari C S, Tommasini M, Tykwinski R R and Milani A 2016 Nanoscale 8 4414
[34] Rogers G W and Liu J Z 2011 J. Am. Chem. Soc. 133 10858
[35] Rogers G W and Liu J Z 2013 Appl. Phys. Lett. 102 021903
[36] Wu B, Cai X, Shui L, Gao E and Liu Z 2020 J. Phys. Chem. C 125 1060
[37] Wu B, Deng H X, Jia X, Shui L, Gao E and Liu Z 2020 npj Comput. Mater. 6 27
[38] Baughman R H, Cui C, Zakhidov A A, Iqbal Z, Barisci J N, Spinks G M, Wallace G G, Mazzoldi A, De Rossi D, Rinzler A G, Jaschinski O, Roth S and Kertesz M 1999 Science 284 1340
[39] Milani A, Lucotti A, Russo V, Tommasini M, Cataldo F, Li Bassi A and Casari C S 2011 J. Phys. Chem. C 115 12836
[40] Liu Y, Wang W, Wang A, Jin Z, Zhao H and Yang Y 2017 Electrochim. Acta 232 142
[41] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Filippi C, Singh D J and Umrigar C J 1994 Phys. Rev. B 50 14947
[44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[45] Puthur R and Sebastian K L 2002 Phys. Rev. B 66 024304
[46] Charan H, Hansen A, Hentschel H G E and Procaccia I 2021 Phys. Rev. Lett. 126 085501
[47] Maier W F, Lau G C and McEwen A B 1985 J. Am. Chem. Soc. 107 4724
[48] Santiago C, Houk K N, DeCicco G J and Scott L T 1978 J. Am. Chem. Soc. 100 692
[49] Zhang K, Zhang Y and Shi L 2020 Chin. Chem. Lett. 31 1746
[50] Szafert S and Gladysz J A 2006 Chem. Rev. 106 1
[51] Gao E and Xu Z 2015 J. Appl. Mech. 82 121012
[52] Yang S and Kertesz M 2006 J. Phys. Chem. A 110 9771
[53] Al-Backri A, Zolyomi V and Lambert C J 2014 J. Chem. Phys. 140 104306
[54] Mostaani E, Monserrat B, Drummond N D and Lambert C J 2016 Phys. Chem. Chem. Phys. 18 14810
[55] Manz T A 2017 RSC Adv. 7 45552
[56] Cahangirov S, Topsakal M and Ciraci S 2010 Phys. Rev. B 82 195444
[57] Gao E, Yuan X, Nielsen S O and Baughman R H 2022 Phys. Rev. Appl. 18 014044
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[13] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[14] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[15] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
No Suggested Reading articles found!