CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures |
Chao Jin(金超)1, Feng-Zhu Ren(任凤竹)1,†, Wei Sun(孙伟)1, Jing-Yu Li(李静玉)1, Bing Wang(王冰)1,‡, and Qin-Fen Gu(顾勤奋)2,§ |
1 Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China; 2 Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC, 3168, Australia |
|
|
Abstract An effective regulation of the magnetism and interface of ferromagnetic materials is not only of great scientific significance, but also has an urgent need in modern industry. In this work, by using the first-principles calculations, we demonstrate an effective approach to achieve non-volatile electrical control of ferromagnets, which proves this idea in multiferroic heterostructures of ferromagnetic LaTiO3 and ferroelectric BiFeO3. The results show that the magnetic properties and two-dimensional electron gas concentrations of LaTiO3 films can be controlled by changing the polarization directions of BiFeO3. The destroyed symmetry being introduced by ferroelectric polarization of the system leads to the transfer and reconstruction of the Ti-3d electrons, which is the fundamental reason for the changing of magnetic properties. This multiferroic heterostructures will pave the way for non-volatile electrical control of ferromagnets and have potential applications.
|
Received: 23 February 2021
Revised: 11 April 2021
Accepted manuscript online: 19 April 2021
|
PACS:
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12047517), the International Cooperation Project of Science and Technology of Henan Province, China (Grant No. 182102410096), the Natural Science Foundation of Henan Province, China (Grant No. 202300410069), and the China Postdoctoral Science Foundation (Grant Nos. 2020M682274 and 2020TQ0089). |
Corresponding Authors:
Feng-Zhu Ren, Bing Wang, Qin-Fen Gu
E-mail: f.z.ren@henu.edu.cn;bwang@vip.henu.edu.cn;qinfeng@ansto.gov.au
|
Cite this article:
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋) Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures 2021 Chin. Phys. B 30 076105
|
[1] Cossu F, Singh N and Schwingenschloegl U 2013 Appl. Phys. Lett. 102 042401 [2] He J, Borisevich A, Kalinin S V, Pennycook S J and Pantelides S T 2010 Phys. Rev. Lett. 105 227203 [3] Wang B, Zhang X W, Zhang Y H, Yuan S Y, Guo Y L, Dong S and Wang J L 2020 Mater. Horiz. 7 1623 [4] Wang B, Zhang Y H, Ma L, Wu Q S, Guo Y L, Zhang X W and Wang J L 2019 Nanoscale 11 4204 [5] Hou F, Cai T Y, Ju S and Shen M R 2012 Acs Nano 6 8552 [6] Cao D, Cai M Q, Hu W Y, Peng J, Zheng Y and Huang H T 2011 Appl. Phys. Lett. 98 031910 [7] Cheng J, Nazir S and Yang K 2016 ACS Appl. Mater. Inter. 8 31959 [8] Wang B, Wu Q S, Zhang Y H, Guo Y L, Zhang X W, Zhou Q H, Dong S and Wang J L 2018 Nanoscale Horiz. 3 551 [9] Chen D, Zhang G B, Cheng Z X, Dong S and Wang YX 2019 IUCrJ 6 189 [10] Chen L, Xu C S, Tian H, Xiang H J, Iniguez J, Yang Y R and Bellaiche L 2019 Phys. Rev. Lett. 122 247701 [11] Dong S, Xiang H and Dagotto E 2019 Natl. Sci. Rev. 6 629 [12] Wen F D, Cao Y W, Liu X R, Pal B, Middey S, Kareev M and Chakhalian J 2018 Appl. Phys. Lett. 112 122405 [13] An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y and Dong S 2017 Phys. Rev. B 96 235112 [14] Yao F, Zhang L F, Meng J L, Liu X J, Zhang X, Zhang WW, Meng J and Zhang H J 2018 J. Appl. Phys. 123 115304 [15] Lee M, Choi H and Chung Y C 2013 J. Appl. Phys. 113 425 [16] Mellan T A, Corá F, Grau-Crespo R and Ismail-Beigi S 2015 Phys. Rev. B 92 085151 [17] Tseng A, Pham A, Smith S C and Li S 2016 J. Appl. Phys. 119 075301 [18] Weng Y K, Zhang J J, Gao B and Dong S 2017 Phys. Rev. B 95 155117 [19] Yin L, Mi W B and Wang X C 2015 J. Mater. Chem. C 3 11066 [20] Dong S and Dagotto E 2013 Phys. Rev. B 88 140404 [21] Li Y, Sun X Y, Xu C Y, Cao J, Sun Z Y and Zhen L 2018 Nanoscale 10 23080 [22] Xue Y B, Zhao J Z, Shan Y Y and Xu H 2018 Physica E 98 120 [23] Wei L Y, Lian C and Meng S 2017 Phys. Rev. B 95 184102 [24] Karthikeyan R and Niranjan M K 2019 J. Magn. Magn. Mater. 469 138 [25] Nanda B R K and Satpathy S 2008 Phys. Rev. B 78 054427 [26] Dash S, Choudhary R N P, Das P R and Kumar A 2014 Appl. Phys. A 118 1023 [27] Hou Y S, Xiang H J and Gong X G 2014 Phys. Rev. B 89 064415 [28] Sun W, Wang W X and Chen D 2019 J. Phys. Chem. C 123 16393 [29] Larson P, Popović Z C and Satpathy S 2008 Phys. Rev. B 77 245122 [30] Okatov S, Poteryaev A and Lichtenstein A 2005 Europhys. Lett. 70 499 [31] Veit M J, Chan M K Ramshaw B J 2019 Phys. Rev. B 99 115126 [32] Weng Y K, Huang X and Tang Y K 2014 J. Appl. Phys. 115 17E108 [33] Mochizuki M Imada M 2004 New J. Phys. 6 154 [34] Lichtenberg F, Widmer D, Bednorz J G, Williams T and Reller A 1991 Z. Phys. B 82 211 [35] Tokura Y, Taguchi Y, Okada Y, Fujishima Y and Iye Y 1993 Phys. Rev. Lett. 70 2126 [36] Sheets W C, Boullay P and Lüders U U 2009 Thin Solid Films 517 5130 [37] Ohtomo A and Hwang H Y 2004 Nature 427 423 [38] Kan E J 2013 Adv. Mater. 771 7 [39] Lee A T and Han M J 2014 Phys. Rev. B 89 115108 [40] Feng N, Mi W B and Wang X C 2015 ACS Appl. Mater. Inter. 7 10612 [41] Wang H, Zheng Y and Cai M Q 2009 Solid State Commun. 149 641 [42] Lu Z X, Li P L and Wan J G 2017 ACS Appl. Mater. Inter. 9 27284 [43] Bai X F, Wei J and Tian B B 2016 J. Phys. Chem. C 120 3595 [44] Yin L, Wang X and Mi W 2016 Phys. Rev. Appl. 6 064022 [45] Yin L, Wang X and Mi W 2017 ACS Appl. Mater. Inter. 9 15887 [46] Perdew J P, Ruzsinszky A and Csonka G I 2008 Phys. Rev. Lett. 102 039902 [47] Blochl P E 1994 Phys. Rev. B 50 17953 [48] Kresse G and Furthmüller J 1993 Phys. Rev. B 47 558 [49] Sun W, Wang W X and Chen D 2019 J. Mater. Chem. C 7 463 [50] Zhang H M, Weng Y K and Yao X Y 2015 Phys. Rev. B 91 195145 [51] Zhou P X, Liu H M and Yan Z B 2014 J. Appl. Phys. 115 423 [52] Wang F, Li J and Du Y 2015 Appl. Surf. Sci. 355 1316 [53] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1 [54] Hashimoto T, Ishibashi S and Terakura K 2010 Phys. Rev. B 82 045124 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|