Abstract The PS defect is obtained by replacing one S atom with one P atom in the wide-bandgap semiconductor MgS. Based on first-principles calculations, the formation energy, defect levels, and electronic structure of the PS defect in different charge states are evaluated. We predict that the neutral PS0 and positively charged PS+1 are the plausible qubit candidates for the construction of quantum systems, since they maintain the spin conservation during optical excited transition. The zero-phonon lines at the PS0 and PS+1 defects are 0.43 eV and 0.21 eV, respectively, which fall in the infrared band. In addition, the zero-field splitting parameter D of the PS+1 with spin-triplet is 2920 MHz, which is in the range of microwave, showing that the PS+1 defect can be manipulated by microwave. Finally, the principal values of the hyperfine tensor are examined, it is found that they decay exponentially with the distance from the defect site.
(Electronic structure of liquid metals and semiconductors and their Alloys)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164020) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BAB201012). We gratefully acknowledge Hefei Advanced Computing Center for computational support.
Corresponding Authors:
Xueling Lei
E-mail: xueling@mail.ustc.edu.cn
Cite this article:
Jijun Huang(黄及军) and Xueling Lei(雷雪玲) Identification of the phosphorus-doping defect in MgS as a potential qubit 2022 Chin. Phys. B 31 106102
[1] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys.89 035002 [2] Rong X, Wang M, Geng J, Qin X, Guo M, Jiao M, Xie Y, Wang P, Huang P, Shi F, Cai Y F, Zou C and Du J 2018 Nat. Commun.9 739 [3] Atature M, Englund D, Vamivakas N, Lee S Y and Wrachtrup J 2018 Nat. Rev. Mater.3 38 [4] Wang Z Y, Casanova J and Plenio M B 2017 Nat. Commun.8 14660 [5] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature500 54 [6] Wang N, Liu G Q, Leong W H, Zeng H L, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q and Liu R B 2018 Phys. Rev. X8 011042 [7] Iwasaki T, Naruki W, Tahara K, Makino T, Kato H, Ogura M, Takeuchi D, Yamasaki S and Hatano M 2017 ACS Nano11 1238 [8] Nusran N M, Joshi K R, Cho K, Tanatar M A, Meier W R, Bud'ko S L, Canfield P C, Liu Y, Lograsso T A and Prozorov R 2018 New J. Phys.20 043010 [9] Hanson R and Awschalom D D 2008 Nature453 1043 [10] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett.92 076401 [11] Awschalom D D and Flatté M E 2007 Nat. Phys.3 153 [12] Zhang N, Yuan H, Zhang C, Xu L X, Zhang J X, Bian G D, Li B and Fang J C 2018 Appl. Phys. Express11 086602 [13] Zhang C, Yuan H, Zhang N, Xu L X, Li B, Cheng G D, Wang Y, Gui Q and Fang J C 2017 J. Phys. D: Appl. Phys.50 505104 [14] Weber J R, Koehl W F, Varley J B, Janotti A, Buckley B B, Van de Walle C G and Awschalom D D 2010 Proc. Natl. Acad. Sci. USA107 8513 [15] Li L, Schroder T, Chen E H, Walsh M, Bayn I, Goldstein J, Gaathon O, Trusheim M E, Lu M, Mower J, Cotlet M, Markham M L, Twitchen D J and Englund D 2015 Nat. Commun.6 6173 [16] Bian G D, Yuan H, Zhang N, Xu L X, Zhang J X, Fan P C, Wang H L, Zhang C, Shan G C, Zhang Q F and Fang J C 2019 Appl. Phys. Lett.114 102105 [17] Davidsson J, Ivady V, Armiento R, Ohshima T, Son N T, Gali A and Abrikosov I A 2019 Appl. Phys. Lett.114 112107 [18] Soykal Ö O, Dev P and Economou S E 2016 Phys. Rev. B93 081207 [19] de las Casas C F, Christle D J, Ul Hassan J, Ohshima T, Son N T and Awschalom D D 2017 Appl. Phys. Lett.111 262403 [20] Koehl W F, Buckley B B, Heremans F J, Calusine G and Awschalom D D 2011 Nature479 84 [21] Wang X P, Zhao M W, Xia H H, Yan S S and Liu X D 2011 J. Appl. Phys.110 033711 [22] Tu Y, Tang Z, Zhao X G, Chen Y, Zhu Z Q, Chu J H and Fang J C 2013 Appl. Phys. Lett.103 072103 [23] Wang X P, Zhao M W, Wang Z H, He X J, Xi Y and Yan S S 2012 Appl. Phys. Lett.100 192401 [24] El Haj Hassan F and Amrani B 2007 J. Phys. Condens. Matter19 386234 [25] Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B57 2257 [26] Kresse G and Hafner J 1993 Phys. Rev. B47 558 [27] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [28] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [29] Blöchl P E 1994 Phys. Rev. B50 17953 [30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [31] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [32] Deak P, Aradi B, Frauenheim T, Janzen E and Gali A 2010 Phys. Rev. B81 153203 [33] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys.124 219906 [34] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys.95 3851 [35] Gao R X, Bian G D, Yuan H and Wang H L 2021 J. Phys. D: Appl. Phys.54 505109 [36] Gali A, Fyta M and Kaxiras E 2008 Phys. Rev. B77 155206 [37] Ivady V, Simon T, Maze J R, Abrikosov I A and Gali A 2014 Phys. Rev. B90 235205 [38] Gali A 2019 Nanophotonics8 1907
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.