Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 106102    DOI: 10.1088/1674-1056/ac7dbc

Identification of the phosphorus-doping defect in MgS as a potential qubit

Jijun Huang(黄及军) and Xueling Lei(雷雪玲)
Department of Physics, Jiangxi Normal University, Nanchang 330022, China
Abstract  The PS defect is obtained by replacing one S atom with one P atom in the wide-bandgap semiconductor MgS. Based on first-principles calculations, the formation energy, defect levels, and electronic structure of the PS defect in different charge states are evaluated. We predict that the neutral PS0 and positively charged PS+1 are the plausible qubit candidates for the construction of quantum systems, since they maintain the spin conservation during optical excited transition. The zero-phonon lines at the PS0 and PS+1 defects are 0.43 eV and 0.21 eV, respectively, which fall in the infrared band. In addition, the zero-field splitting parameter D of the PS+1 with spin-triplet is 2920 MHz, which is in the range of microwave, showing that the PS+1 defect can be manipulated by microwave. Finally, the principal values of the hyperfine tensor are examined, it is found that they decay exponentially with the distance from the defect site.
Keywords:  point defects      MgS semiconductor      qubits      first-principles calculations  
Received:  08 April 2022      Revised:  19 May 2022      Accepted manuscript online: 
PACS:  61.72.J- (Point defects and defect clusters)  
  61.72.jn (Color centers)  
  61.72.U- (Doping and impurity implantation)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164020) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BAB201012). We gratefully acknowledge Hefei Advanced Computing Center for computational support.
Corresponding Authors:  Xueling Lei     E-mail:

Cite this article: 

Jijun Huang(黄及军) and Xueling Lei(雷雪玲) Identification of the phosphorus-doping defect in MgS as a potential qubit 2022 Chin. Phys. B 31 106102

[1] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[2] Rong X, Wang M, Geng J, Qin X, Guo M, Jiao M, Xie Y, Wang P, Huang P, Shi F, Cai Y F, Zou C and Du J 2018 Nat. Commun. 9 739
[3] Atature M, Englund D, Vamivakas N, Lee S Y and Wrachtrup J 2018 Nat. Rev. Mater. 3 38
[4] Wang Z Y, Casanova J and Plenio M B 2017 Nat. Commun. 8 14660
[5] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature 500 54
[6] Wang N, Liu G Q, Leong W H, Zeng H L, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q and Liu R B 2018 Phys. Rev. X 8 011042
[7] Iwasaki T, Naruki W, Tahara K, Makino T, Kato H, Ogura M, Takeuchi D, Yamasaki S and Hatano M 2017 ACS Nano 11 1238
[8] Nusran N M, Joshi K R, Cho K, Tanatar M A, Meier W R, Bud'ko S L, Canfield P C, Liu Y, Lograsso T A and Prozorov R 2018 New J. Phys. 20 043010
[9] Hanson R and Awschalom D D 2008 Nature 453 1043
[10] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
[11] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
[12] Zhang N, Yuan H, Zhang C, Xu L X, Zhang J X, Bian G D, Li B and Fang J C 2018 Appl. Phys. Express 11 086602
[13] Zhang C, Yuan H, Zhang N, Xu L X, Li B, Cheng G D, Wang Y, Gui Q and Fang J C 2017 J. Phys. D: Appl. Phys. 50 505104
[14] Weber J R, Koehl W F, Varley J B, Janotti A, Buckley B B, Van de Walle C G and Awschalom D D 2010 Proc. Natl. Acad. Sci. USA 107 8513
[15] Li L, Schroder T, Chen E H, Walsh M, Bayn I, Goldstein J, Gaathon O, Trusheim M E, Lu M, Mower J, Cotlet M, Markham M L, Twitchen D J and Englund D 2015 Nat. Commun. 6 6173
[16] Bian G D, Yuan H, Zhang N, Xu L X, Zhang J X, Fan P C, Wang H L, Zhang C, Shan G C, Zhang Q F and Fang J C 2019 Appl. Phys. Lett. 114 102105
[17] Davidsson J, Ivady V, Armiento R, Ohshima T, Son N T, Gali A and Abrikosov I A 2019 Appl. Phys. Lett. 114 112107
[18] Soykal Ö O, Dev P and Economou S E 2016 Phys. Rev. B 93 081207
[19] de las Casas C F, Christle D J, Ul Hassan J, Ohshima T, Son N T and Awschalom D D 2017 Appl. Phys. Lett. 111 262403
[20] Koehl W F, Buckley B B, Heremans F J, Calusine G and Awschalom D D 2011 Nature 479 84
[21] Wang X P, Zhao M W, Xia H H, Yan S S and Liu X D 2011 J. Appl. Phys. 110 033711
[22] Tu Y, Tang Z, Zhao X G, Chen Y, Zhu Z Q, Chu J H and Fang J C 2013 Appl. Phys. Lett. 103 072103
[23] Wang X P, Zhao M W, Wang Z H, He X J, Xi Y and Yan S S 2012 Appl. Phys. Lett. 100 192401
[24] El Haj Hassan F and Amrani B 2007 J. Phys. Condens. Matter 19 386234
[25] Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[32] Deak P, Aradi B, Frauenheim T, Janzen E and Gali A 2010 Phys. Rev. B 81 153203
[33] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[34] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[35] Gao R X, Bian G D, Yuan H and Wang H L 2021 J. Phys. D: Appl. Phys. 54 505109
[36] Gali A, Fyta M and Kaxiras E 2008 Phys. Rev. B 77 155206
[37] Ivady V, Simon T, Maze J R, Abrikosov I A and Gali A 2014 Phys. Rev. B 90 235205
[38] Gali A 2019 Nanophotonics 8 1907
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!