CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films |
Simin An(安思敏)1, Xingyu Gao(高兴誉)1, Xian Zhang(张弦)2, Xin Chen(陈欣)1, Jiawei Xian(咸家伟)1, Yu Liu(刘瑜)1, Bo Sun(孙博)1, Haifeng Liu(刘海风)1, and Haifeng Song(宋海峰)1,† |
1 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China |
|
|
Abstract Lattice parameters are a basic quantity in material characterization, and a slight alteration in lattice parameters directly affects the properties of materials. However, there are still considerable controversies as to whether lattice expansion or contraction occurs in metallic nanomaterials with size reduction. Here, the size dependences of the lattice parameter and surface free energy of clean Cu (100) films are investigated via simulations. Lattice parameters of the exposed surfaces contract, whereas lattice expansion occurs along the direction perpendicular to the surfaces with decreasing film thicknesses. This is striking since the metallic bonds usually lack strong directionality, and it is always regarded that the lattice variations in all directions are consistent. The contraction parallel to the surface is more severe than the expansion perpendicular to the surface in films. The lattices change from cubic to tetragonal with decreasing film thickness. Consequently, common contractions and occasional expansions of the lattice parameters of Cu nanoparticles have been observed in previous experiments. Increasing free energy and surface free energy with decreasing thicknesses is the thermodynamic origin of the lattice variations. Our study therefore provides a comprehensive physical basis for the surface effects on the lattice variations.
|
Received: 11 February 2022
Revised: 27 May 2022
Accepted manuscript online: 08 June 2022
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
64.60.an
|
(Finite-size systems)
|
|
65.40.gp
|
(Surface energy)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
Fund: Project supported by the fellowship of China Postdoctoral Science Foundation (Grant No. 2021T140073), the National Natural Science Foundation of China (Grant No. 5210011290), the Science Challenge Project of China (Grant No. TZ2018002), and the National Key Research and Development Program of China (Grant No. 2016YFB0201204). |
Corresponding Authors:
Haifeng Song
E-mail: song_haifeng@iapcm.ac.cn
|
Cite this article:
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰) Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films 2023 Chin. Phys. B 32 036804
|
[1] Park N J, Field D P, Nowell M M and Besser P R 2005 J. Electron. Mater. 34 1500 [2] Liu H D, Zhao Y P, Ramanath G, Murarka S P and Wang G C 2001 Thin Solid Films 384 151 [3] Yang C C and Jiang Q 2005 Acta Mater. 53 3305 [4] Jiang Q and Lu H M 2008 Surf. Sci. Rep. 63 427 [5] Mistry H, Varela A S, Kühl S, Strasser P and Cuenya B R 2016 Nat. Rev. Mater. 1 16009 [6] Muttaqien F, Hamamoto Y, Hamada I, Inagaki K, Shiozawa Y, Mukai K, Koitaya T, Yoshimoto S, Yoshinobu J and Morikawa Y 2017 J. Chem. Phys. 147 094702 [7] Cheng T, Xiao H and Goddard W A 2017 Proc. Natl. Acad. Sci. USA 114 1795 [8] Zhao J, Xue S, Barber J, Zhou Y, Meng J and Ke X 2020 J. Mater. Chem. A 8 4700 [9] Reske R, Duca M, Oezaslan M, Schouten K J P, Koper M T M and Strasser P 2013 J. Phys. Chem. Lett. 4 2410 [10] Mistry H, Reske R, Zeng Z, Zhao Z J, Greeley J, Strasser P and Cuenya B R 2014 J. Am. Chem. Soc. 136 16473 [11] Back S, Yeom M S and Jung Y 2015 ACS Catal. 5 5089 [12] Diehm P M, Áoston P and Albe K 2012 ChemPhysChem 13 2443 [13] Nafday D, Sarkar S, Ayyub P and Saha-Dasgupta T 2018 ACS Nano 12 7246 [14] Wang L, Zeng Z, Gao W, Maxson T, Raciti D, Giroux M, Pan X, Wang C and Greeley J 2019 Science 363 870 [15] Sheng J, Welzel U and Mittemeijer E J 2010 Appl. Phys. Lett. 97 153109 [16] Champion Y, Bernard F, Millot N and Perriat P 2005 Appl. Phys. Lett. 86 231914 [17] Wasserman H J and Vermaak J S 1972 Surf. Sci. 32 168 [18] Birringer R, Hoffmann M and Zimmer P 2002 Phys. Rev. Lett. 88 206104 [19] Apai G, Hamilton J F, Stohr J and Thompson A 1979 Phys. Rev. Lett. 43 165 [20] Liu X D, Zhang H Y, Lu K and Hu Z Q 1994 J. Phys.: Condens. Matter 6 L497 [21] Cammarata R C and Sieradzki K 1994 Annu. Rev. Mater. Sci. 24 215 [22] Jamshidian M, Thamburaja P and Rabczuk T 2015 Phys. Chem. Chem. Phys. 17 25494 [23] Bonzel H P and Nowicki M 2004 Phys. Rev. B 70 245430 [24] Abbasian A, Ghaffarian S R, Mohammadi N and Fallahi D 2004 J. Appl. Polym. Sci. 93 1972 [25] Aragones J L, Valeriani C and Vega C 2012 J. Chem. Phys. 137 146101 [26] Rickman J M and LeSar R 2002 Annu. Rev. Mater. Res. 32 195 [27] Frenkel D and Ladd A J C 1984 J. Chem. Phys. 81 3188 [28] Frenkel D and Smith B 2002 Understanding Molecular Simulation: From Algorithms to Applications (Elsevier: Oxford) [29] Allen M P and Tildesley D J 2017 Computer Simulation of Liquids (OUP Oxford: United Kingdom) [30] Jarzynski C 2011 Ann. Rev. Conden. Matter Phys. 2 329 [31] Jarzynski C 1997 Phys. Rev. Lett. 78 2690 [32] Freitas R, Asta M and de Koning M 2016 Comp. Mater. Sci. 112 333 [33] Paula Leite R and de Koning M 2019 Comp. Mater. Sci. 159 316 [34] Plimpton S 1995 J. Comput. Phys. 117 1 [35] Mendelev M I, Rahman M J, Hoyt J J and Asta M 2010 Modell. Simul. Mater. Sci. Eng. 18 074002 [36] Trong D N, Long V C and Ţălu Ş 2022 Appl. Sci. 12 4437 [37] Zou L, Yang C, Lei Y, Zakharov D, Wiezorek J M K, Su D, Yin Q, Li J, Liu Z, Stach E A, Yang J C, Qi L, Wang G and Zhou G 2018 Nat. Mater. 17 56 [38] Mendelev M I, Kramer M J, Becker C A and Asta M 2008 Philos. Mag. 88 1723 [39] Joshi N, Mathur N, Mane T and Sundaram D 2018 Comp. Mater. Sci. 145 140 [40] Yang C C and Li S 2007 Phys. Rev. B 75 165413 [41] An S, Su R, Zhao S, Liu J, Liu B and Guan P 2018 Phys. Rev. B 98 134101 [42] Pelton A D M K H, Kurz W, Brener E, Murch G E, Binder K, Wagner R, Kampmann R, Voorhees P W, Binder K, Fratzl P, Purdy G R, Bréchet Y J M, Inden G, Delaey L and Kunz M 2001 Phase transformations in materials (Weinheim: Wiley) [43] Gumbsch P and Daw M S 1991 Phys. Rev. B 44 3934 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|