Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 036804    DOI: 10.1088/1674-1056/ac76b5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films

Simin An(安思敏)1, Xingyu Gao(高兴誉)1, Xian Zhang(张弦)2, Xin Chen(陈欣)1, Jiawei Xian(咸家伟)1, Yu Liu(刘瑜)1, Bo Sun(孙博)1, Haifeng Liu(刘海风)1, and Haifeng Song(宋海峰)1,†
1 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
Abstract  Lattice parameters are a basic quantity in material characterization, and a slight alteration in lattice parameters directly affects the properties of materials. However, there are still considerable controversies as to whether lattice expansion or contraction occurs in metallic nanomaterials with size reduction. Here, the size dependences of the lattice parameter and surface free energy of clean Cu (100) films are investigated via simulations. Lattice parameters of the exposed surfaces contract, whereas lattice expansion occurs along the direction perpendicular to the surfaces with decreasing film thicknesses. This is striking since the metallic bonds usually lack strong directionality, and it is always regarded that the lattice variations in all directions are consistent. The contraction parallel to the surface is more severe than the expansion perpendicular to the surface in films. The lattices change from cubic to tetragonal with decreasing film thickness. Consequently, common contractions and occasional expansions of the lattice parameters of Cu nanoparticles have been observed in previous experiments. Increasing free energy and surface free energy with decreasing thicknesses is the thermodynamic origin of the lattice variations. Our study therefore provides a comprehensive physical basis for the surface effects on the lattice variations.
Keywords:  nanostructure      lattice variations      surface free energy      simulation  
Received:  11 February 2022      Revised:  27 May 2022      Accepted manuscript online:  08 June 2022
PACS:  68.55.-a (Thin film structure and morphology)  
  64.60.an (Finite-size systems)  
  65.40.gp (Surface energy)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: Project supported by the fellowship of China Postdoctoral Science Foundation (Grant No. 2021T140073), the National Natural Science Foundation of China (Grant No. 5210011290), the Science Challenge Project of China (Grant No. TZ2018002), and the National Key Research and Development Program of China (Grant No. 2016YFB0201204).
Corresponding Authors:  Haifeng Song     E-mail:  song_haifeng@iapcm.ac.cn

Cite this article: 

Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰) Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films 2023 Chin. Phys. B 32 036804

[1] Park N J, Field D P, Nowell M M and Besser P R 2005 J. Electron. Mater. 34 1500
[2] Liu H D, Zhao Y P, Ramanath G, Murarka S P and Wang G C 2001 Thin Solid Films 384 151
[3] Yang C C and Jiang Q 2005 Acta Mater. 53 3305
[4] Jiang Q and Lu H M 2008 Surf. Sci. Rep. 63 427
[5] Mistry H, Varela A S, Kühl S, Strasser P and Cuenya B R 2016 Nat. Rev. Mater. 1 16009
[6] Muttaqien F, Hamamoto Y, Hamada I, Inagaki K, Shiozawa Y, Mukai K, Koitaya T, Yoshimoto S, Yoshinobu J and Morikawa Y 2017 J. Chem. Phys. 147 094702
[7] Cheng T, Xiao H and Goddard W A 2017 Proc. Natl. Acad. Sci. USA 114 1795
[8] Zhao J, Xue S, Barber J, Zhou Y, Meng J and Ke X 2020 J. Mater. Chem. A 8 4700
[9] Reske R, Duca M, Oezaslan M, Schouten K J P, Koper M T M and Strasser P 2013 J. Phys. Chem. Lett. 4 2410
[10] Mistry H, Reske R, Zeng Z, Zhao Z J, Greeley J, Strasser P and Cuenya B R 2014 J. Am. Chem. Soc. 136 16473
[11] Back S, Yeom M S and Jung Y 2015 ACS Catal. 5 5089
[12] Diehm P M, Áoston P and Albe K 2012 ChemPhysChem 13 2443
[13] Nafday D, Sarkar S, Ayyub P and Saha-Dasgupta T 2018 ACS Nano 12 7246
[14] Wang L, Zeng Z, Gao W, Maxson T, Raciti D, Giroux M, Pan X, Wang C and Greeley J 2019 Science 363 870
[15] Sheng J, Welzel U and Mittemeijer E J 2010 Appl. Phys. Lett. 97 153109
[16] Champion Y, Bernard F, Millot N and Perriat P 2005 Appl. Phys. Lett. 86 231914
[17] Wasserman H J and Vermaak J S 1972 Surf. Sci. 32 168
[18] Birringer R, Hoffmann M and Zimmer P 2002 Phys. Rev. Lett. 88 206104
[19] Apai G, Hamilton J F, Stohr J and Thompson A 1979 Phys. Rev. Lett. 43 165
[20] Liu X D, Zhang H Y, Lu K and Hu Z Q 1994 J. Phys.: Condens. Matter 6 L497
[21] Cammarata R C and Sieradzki K 1994 Annu. Rev. Mater. Sci. 24 215
[22] Jamshidian M, Thamburaja P and Rabczuk T 2015 Phys. Chem. Chem. Phys. 17 25494
[23] Bonzel H P and Nowicki M 2004 Phys. Rev. B 70 245430
[24] Abbasian A, Ghaffarian S R, Mohammadi N and Fallahi D 2004 J. Appl. Polym. Sci. 93 1972
[25] Aragones J L, Valeriani C and Vega C 2012 J. Chem. Phys. 137 146101
[26] Rickman J M and LeSar R 2002 Annu. Rev. Mater. Res. 32 195
[27] Frenkel D and Ladd A J C 1984 J. Chem. Phys. 81 3188
[28] Frenkel D and Smith B 2002 Understanding Molecular Simulation: From Algorithms to Applications (Elsevier: Oxford)
[29] Allen M P and Tildesley D J 2017 Computer Simulation of Liquids (OUP Oxford: United Kingdom)
[30] Jarzynski C 2011 Ann. Rev. Conden. Matter Phys. 2 329
[31] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[32] Freitas R, Asta M and de Koning M 2016 Comp. Mater. Sci. 112 333
[33] Paula Leite R and de Koning M 2019 Comp. Mater. Sci. 159 316
[34] Plimpton S 1995 J. Comput. Phys. 117 1
[35] Mendelev M I, Rahman M J, Hoyt J J and Asta M 2010 Modell. Simul. Mater. Sci. Eng. 18 074002
[36] Trong D N, Long V C and Ţălu Ş 2022 Appl. Sci. 12 4437
[37] Zou L, Yang C, Lei Y, Zakharov D, Wiezorek J M K, Su D, Yin Q, Li J, Liu Z, Stach E A, Yang J C, Qi L, Wang G and Zhou G 2018 Nat. Mater. 17 56
[38] Mendelev M I, Kramer M J, Becker C A and Asta M 2008 Philos. Mag. 88 1723
[39] Joshi N, Mathur N, Mane T and Sundaram D 2018 Comp. Mater. Sci. 145 140
[40] Yang C C and Li S 2007 Phys. Rev. B 75 165413
[41] An S, Su R, Zhao S, Liu J, Liu B and Guan P 2018 Phys. Rev. B 98 134101
[42] Pelton A D M K H, Kurz W, Brener E, Murch G E, Binder K, Wagner R, Kampmann R, Voorhees P W, Binder K, Fratzl P, Purdy G R, Bréchet Y J M, Inden G, Delaey L and Kunz M 2001 Phase transformations in materials (Weinheim: Wiley)
[43] Gumbsch P and Daw M S 1991 Phys. Rev. B 44 3934
[1] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[2] Effects of O2 adsorption on secondary electron emission properties
Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆)^2, Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2023, 32(4): 047901.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[5] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[8] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[13] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[14] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[15] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
No Suggested Reading articles found!