CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices |
Huihui He(何慧卉)1,2 and Shenyuan Yang(杨身园)1,2,† |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Using first-principles calculations based on density functional theory, we have systematically studied the influence of in-plane lattice constant and thickness of slabs on the concentration and distribution of two-dimensional hole gas (2DHG) in AlN/GaN superlattices. We show that the increase of in-plane lattice constant would increase the concentration of 2DHG at interfaces and decrease the valence band offset, which may lead to a leak of current. Increasing the thickness of AlN and/or decreasing the thickness of GaN would remarkably strengthen the internal field in GaN layer, resulting in better confinement of 2DHG at AlN/GaN interfaces. Therefore, a moderate larger in-plane lattice constant and thicker AlN layer could improve the concentration and confinement of 2DHG at AlN/GaN interfaces. Our study could serve as a guide to control the properties of 2DHG at III-nitride interfaces and help to optimize the performance of p-type nitride-based devices.
|
Received: 18 March 2021
Revised: 07 May 2021
Accepted manuscript online: 13 May 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.21.Cd
|
(Superlattices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2202801) and the National Natural Science Foundation of China (Grant No. 12074369). The calculations were performed on TianHe-2 at National Supercomputer Center in Lv Liang of China. |
Corresponding Authors:
Shenyuan Yang
E-mail: syyang@semi.ac.cn
|
Cite this article:
Huihui He(何慧卉) and Shenyuan Yang(杨身园) First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices 2022 Chin. Phys. B 31 017104
|
[1] Fujita S 2015 Jpn. J. Appl. Phys. 54 030101 [2] Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D: Appl. Phys. 51 163001 [3] Jones E A, Wang F F and Costinett D 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 707 [4] Nakamura S and Krames M R 2013 Proc. IEEE 101 2211 [5] Dong Y, Tian B, Kempa T J and Lieber C M 2009 Nano Lett. 9 2183 [6] Tsao J Y, Hollis M A and Kaplar R J 2017 Adv. Electron. Mater 4 1600501 [7] Van de Walle C G, Stampfl C, Neugebauer J, McCluskey M D and Johnson N M 1999 MRS Internet J. Nitride semicond. Res. 4 890 [8] Crawford M H 2017 Semiconductors and Semimetals Vol. 96 (Elsevier) pp. 3-44 [9] Strite S and Morkoζ H 1992 J. Vac. Sci. Technol. B 10 1237 [10] Park J H, Kim D Y, Schubert E F, Cho J and Kim J K 2018 ACS Energy Lett. 3 655 [11] Nakarmi M L, Kim K H, Li J, Lin J Y and Jiang H X 2003 Appl. Phys. Lett. 82 3041 [12] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653 [13] Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S and Mishra U K 2001 J. Appl. Phys. 90 5196 [14] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250 [15] Zhao J, Lin Z, Corrigan T D, Wang Z, You Z and Wang Z 2007 Appl. Phys. Lett. 91 173507 [16] Saito W, Takada Y, Kuraguchi M, Tsuda K and Omura I 2006 IEEE Trans. Electron Devices 53 356 [17] Eastman L F, Tilak V, Smart J, Green B M, Chumbes E M, Dimitrov R, Hyungtak Kim, Ambacher O S, Weimann N, Prunty T, Murphy M, Schaff W J and Shealy J R 2001 IEEE Trans. Electron Devices 48 479 [18] Hsu L and Walukiewicz W 1999 Appl. Phys. Lett. 74 2405 [19] Wei, Qiyuan, Wu Z, Sun K, Ponce F A, Hertkorn J and Scholz F 2009 Appl. Phys. Express 2 121001 [20] Nakajima A, Liu P, Ogura M, Makino T, Nishizawa S, Yamasaki S, Ohashi H, Kakushima K and Iwai H 2013 Appl. Phys. Express 6 091002 [21] Reuters B, Hahn H, Pooth A, Heuken M, Kalisch H and Vescan A 2014 J. Phys. D 47 175103 [22] Chaudhuri R, Bader S J, Chen Z, Muller D A, Xing H G and Jena D 2019 Science 365 1454 [23] Xiao L J, Fan C, Ruo L J, Jian J Z, Bo W, Ping H, Zi L X, Rong Z and You D Z 2005 Chin. Phys. Lett. 22 454 [24] Al Mustafa N, Granzner R, Polyakov V M, Racko J, Mikolášek M, Breza J and Schwierz F 2012 J. Appl. Phys. 111 044512 [25] Peng E, Wang X, Xiao H, Wang C, Yin H, Chen H, Feng C, Jiang L, Hou X and Wang Z 2013 J. Alloys Compd. 576 48 [26] Yan J, Wang X, Wang Q, Qu S, Xiao H, Peng E, Kang H, Wang C, Feng C, Yin H, Jiang L, Li B, Wang Z and Hou X 2014 J. Appl. Phys. 116 054502 [27] Yan J, Wang Q, Wang X, Feng C, Xiao H, Liu S, Gong J, Liu F and Li B 2016 J. Appl. Phys. 120 124501 [28] Lakdja A, Bouhafs B and Ruterana P 2005 Comput. Mater. Sci 33 157 [29] Cai D, Kang J and Guo G Y 2009 Phys. Rev. B 80 045311 [30] Cui X Y, Delley B and Stampfl C 2010 J. Appl. Phys 108 103701 [31] Gorczyca I, Suski T, Christensen N E and Svane A 2018 J. Phys.: Condens. Matter 30 063001 [32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [33] Blöchl P E 1994 Phys. Rev. B 50 17953 [34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [36] Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161 [37] Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442 [38] Adamski N L, Dreyer C E and Van de Walle C G 2019 Appl. Phys. Lett. 115 232103 [39] Dreyer C E, Janotti A, Van de Walle C G and Vanderbilt D 2016 Phys. Rev. X 6 021038 [40] Madelung O 2004 Semiconductors: Data Handbook ed O Madelung (Berlin, Heidelberg: Springer) pp. 71-172 [41] Stampfl C and Van de Walle C G 1999 Phys. Rev. B 59 5521 [42] Wright A F and Nelson J S 1995 Phys. Rev. B 51 7866 [43] Zoroddu A, Bernardini F, Ruggerone P and Fiorentini V 2001 Phys. Rev. B 64 045208 [44] Resta R and Vanderbilt D 2007 Physics of Ferroelectrics vol. 105 (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 31-68 [45] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024 [46] Betancourt J, Saavedra-Arias J J, Burton J D, Ishikawa Y, Tsymbal E Y and Velev J P 2013 Phys. Rev. B 88 085418 [47] Mishra R, Restrepo O D, Rajan S and Windl W 2011 Appl. Phys. Lett. 98 232114 [48] Qin J, Zhou Q, Liao B and Wang H 2018 Electronics 7 410 [49] Nakajima A, Liu P, Ogura M, Makino T, Kakushima K, Nishizawa S, Ohashi H, Yamasaki S and Iwai H 2014 J. Appl. Phys. 115 153707 [50] Martin G, Botchkarev A, Rockett A and Morkoç H 1996 Appl. Phys. Lett. 68 2541 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|