Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020701    DOI: 10.1088/1674-1056/ac6947
GENERAL Prev   Next  

Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction

Zeng Liu(刘增)1,2,†, Ling Du(都灵)3, Shao-Hui Zhang(张少辉)4,‡, Ang Bian(边昂)5, Jun-Peng Fang(方君鹏)6, Chen-Yang Xing(邢晨阳)7, Shan Li(李山)8, Jin-Cheng Tang(汤谨诚)8, Yu-Feng Guo(郭宇锋)1,2, and Wei-Hua Tang(唐为华)1,2,§
1 College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China;
4 Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China;
5 Key Laboratory of Luminescence and Optical Information of Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China;
6 School of Integrated Circuits, Tsinghua University, Beijing 100084, China;
7 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
8 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  A flower-like SnO2-SnO/porous GaN (FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical wet etching of GaN, and SnO2-SnO composites with p-n junctions were loaded onto PGaN surface directly applied to H2S sensor. Meanwhile, the excellent transport capability of heterojunction between FSS and PGaN facilitates electron transfer, that is, a response time as short as 65 s and a release time up to 27 s can be achieved merely at 150 ℃ under 50 ppm H2S concentration, which has laid a reasonable theoretical and experimental foundation for the subsequent PGaN-based heterojunction gas sensor. The lowering working temperature and high sensitivity (23.5 at 200 ppm H2S) are attributed to the structure of PGaN itself and the heterojunction between SnO2-SnO and PGaN. In addition, the as-obtained sensor showed ultra-high test stability. The simple design strategy of FSS/PGaN-based H2S sensor highlights its potential in various applications.
Keywords:  gas sensor      SnO2-SnO      porous GaN      heterojunction  
Received:  04 February 2022      Revised:  19 April 2022      Accepted manuscript online:  22 April 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115 and XK1060921002), Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62204125), the National Key R&D Program of China (Grant No. 2022YFB3605404), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515010790).
Corresponding Authors:  Zeng Liu, Shao-Hui Zhang, Wei-Hua Tang     E-mail:;;

Cite this article: 

Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华) Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction 2023 Chin. Phys. B 32 020701

[1] Pandey S K, Kim K H and Tang K T 2012 TrAC Trends Anal. Chem. 32 87
[2] Chen H, Rim Y S, Wang I C, Li C, Zhu B, Sun M, Goorsky M S, He X and Yang Y 2017 ACS Nano. 11 4710
[3] Srivastava S K, Magudapathy P, Gangopadhyay P, Amirthapandian S, Bera S and Das A 2019 Thin Solid Films 681 86
[4] Kulkarni M R, John R A, Tiwari N, Nirmal A, Ng S E, Nguyen A C and Mathews N 2019 Small 15 1901457
[5] Erme K and Jõgi I 2019 Environ. Sci. Technol. 53 5266
[6] Bachhav M, Pawar G, Vurpillot F, Danoix R, Danoix F, Hannoyer B, Dong Y and Marquis E 2019 J. Phys. Chem. C 123 1313
[7] Tiwari N, Nirmal A, Kulkarni M R, John R A and Mathews N 2020 Inorg. Chem. Front. 7 1822
[8] Prati E, Michielis M D, Belli M, Cocco S, Fanciulli M, Patil D K, Ruoff M, Kern D P, Wharam D A, Verduijn J, Tettamanzi G C, Rogge S, Roche B, Wacquez R, Jehl X, Vinet M and Sanquer M 2012 Nanotechnology 23 215204
[9] Cho S Y, Yoo H W, Kim J Y, Jung W B, Jin M L, Kim J S, Jeon H J and Jung H T 2016 Nano Lett. 16 4508
[10] Youn Y, Lee M, Kim D, Jeong J K, Kang Y and Han S 2019 Chem. Mater. 31 5475
[11] Boyal E, Baran V, Asar T, Özçelik S and Kasap M 2017 J. Alloys Compd. 692 119e123
[12] Ma N, Suematsu K, Yuasa M, Kida T and Shimanoe K 2015 ACS Appl. Mater. Interfaces 7 5863
[13] Motsoeneng R G, Kortidis I, Ray S S and Motaung D E 2019 ACS Omega 4 3696
[14] Shanmugasundaram A, Basak P, Satyanarayan L and Manoram S V 2013 Sens. Actuators B 185 265
[15] Song F, Su H L, Chen J J, Moon W J, Lau W M and Zhang D 2012 J. Mater. Chem. 22 1121
[16] Wang Y, Liu C Y, Wang Z, Song Z W, Han N and Chen Y F 2019 Sens. Actuators B 278 28
[17] Suman P H, Felix A A, Tuller H L, Varela J A and Orlandi M O 2015 Sens. Actuators B 208 122
[18] Ozdemir S and Gole J L 2010 Sens. Actuators B 151 274
[19] Dheyab A B, Alwan A M and Zayer M Q 2019 Plasmonics 14 501
[20] Bilenko D I, Belobrovaja O Y, Coldobanova O Y, Jarkova E A, Khasina E I, Polyanskaya V P, Melnikova T E, Mysenko I B, Smirnov V V and Filippova G O 2000 Sens. Actuators A 79 147
[21] Baratto C, Comini E, Faglia G, Sberveglieri G, Francia G D, Filippo F D, Ferrara V L, Quercia L and Lancellotti L 2000 Sens. Actuators B 65 257
[22] Pancheri L, Oton C J, Gaburro Z and Pavesi L 2003 Sens. Actuators B 89 237
[23] Xu K C, Lu Y Y and Takei K 2019 Adv. Mater. Technol. 4 1800628
[24] Xu K C, Lu Y Y, Honda S, Arie T, Akita S and Takei K 2019 J. Mater. Chem. C 7 9609
[25] Zhang M X, Zhao C H, Gong H M, Niu G Q and Wang F 2019 ACS Appl. Mater. Interfaces 11 33124
[26] Zhang M R, Jiang Q M, Wang Z G, Zhang S H, Hou F and Pan G B 2017 Sens. Actuators B 253 652
[27] Zhang M R, Hou F, Wang Z G, Zhang S H and Pan G B 2017 Appl. Surf. Sci. 410 332
[28] Zhang M R, Qin S J, Peng H D and Pan G B 2016 Mater. Lett. 182 363
[29] Zhong A H, Sasaki T and Hane K 2014 Sens. Actuators A 209 52
[30] Luo X J, Zheng X J, Wang D, Zhang Y, Cheng H B, Wang X Y, Zhuang H J and Lou Y L 2014 Sens. Actuators B 202 1010
[31] Abdullah Q N, Yam F K, Hassan J J, Chin C W, Hassan Z and Bououdina M 2013 Int. J. Hydrogen Energy 38 14085
[32] Wang C, Huang H, Zhang M R, Song W X, Zhang L, Xi R, Wang L J and Pan G B 2019 Nanoscale Adv. 1 1232
[33] Wang C, Wang L J, Zhang L, Xi R, Huang H, Zhang S H and Pan G B 2019 J. Alloys Compd. 790 363
[34] Wang C, Zhang M R, Song W X, Peng H D, Huang H, Wang Z G, Xi R and Pan G B 2018 Chem. Phys. Lett. 710 54
[35] Shankar P and Rayappan J B B 2017 J. Mater. Chem. C 5 10869
[36] Wang Y, Qu F, Liu J, Wang Y, Zhou J and Ruan S 2015 Sens. Actuators B 209 515
[37] Kheel H, Sun G J, Lee J K, Lee S, Dwivedi R P and Lee C 2016 Ceram. Int. 42 18597
[38] Jiang P, Zhang H, Chen C, Liang J, Luo Y, Zhang M and Cai M 2017 Cryst. Eng. Comm. 19 5742
[39] Song Z, Wei Z, Wang B, Luo Z, Xu S, Zhang W, Yu H, Li M, Huang Z, Zang J, Yi F and Liu H 2016 Chem. Mater. 28 1205
[40] Guo W, Mei L, Wen J and Ma J 2016 RSC Adv. 6 15048
[41] Hong P P, Manh H C, Toan N V, Duy N V, Duc H N and Hieu N V 2020 Sens. Actuators A 303 111722
[42] Ji H, Zeng W and Li Y 2019 Nanoscale 11 22664
[43] Wang X, Wang Y, Tian F, Liang H, Wang K, Zhao X, Lu Z, Jiang K, Yang L and Lou X 2015 J. Phys. Chem. C 119 15963
[44] Yousefi S M, Rahbarpour S and Ghafoorifard H 2019 Mater. Chem. Phys. 227 148
[45] Selvaraj K, Kumar S and Lakshmanan R 2014 Ain. Shams Eng. J. 5 885
[46] Yang S, Wang Z, Zou Y, Luo X, Pan X, Zhang X, Hu Y, Chen K, Huang Z, Wang S, Zhang K and Gu H 2017 Sens. Actuators B 248 160
[47] Liu Y, Jiao Y, Zhang Z L, Qu F Y, Umar A and Wu X 2014 ACS Appl. Mater. Interfaces 6 2174
[48] Zappa D, Galstyan V, Kaur N, Arachchige H M M, Sisman O and Comini E 2018 Anal. Chim. Acta 1039 1
[1] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[2] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[3] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[13] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[14] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[15] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
No Suggested Reading articles found!