Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098401    DOI: 10.1088/1674-1056/ac5a42

Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells

Xiufang Yang(杨秀芳)1,2,3,4, Shengsheng Zhao(赵生盛)1,2,3,4, Qian Huang(黄茜)1,2,3,4,‡, Cao Yu(郁超)5, Jiakai Zhou(周佳凯)1,2,3,4, Xiaoning Liu(柳晓宁)1,2,3,4, Xianglin Su(苏祥林)1,2,3,4, Ying Zhao(赵颖)1,2,3,4, and Guofu Hou(侯国付)1,2,3,4,†
1 Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China;
2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China;
3 Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China;
4 Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, China;
5 Suzhou Maxwell Automation Equipment Co. Ltd, Suzhou 215299, China
Abstract  The silicon heterojunction (SHJ) solar cell has long been considered as one of the most promising candidates for the next-generation PV market. Transition metal oxides (TMOs) show good carrier selectivity when combined with c-Si solar cells. This has led to the rapid demonstration of the remarkable potential of TMOs (especially MoOx) with high work function to replace the p-type a-Si:H emitting layer. MoOx can induce a strong inversion layer on the interface of n-type c-Si, which is beneficial to the extraction and conduction of holes. In this paper, the radio-frequency (RF) magnetron sputtering is used to deposit MoOx films. The optical, electrical and structural properties of MoOx films are measured and analyzed, with focus on the inherent compositions and work function. Then the MoOx films are applied into SHJ solar cells. When the MoOx works as a buffer layer between ITO/p-a-Si:H interface in the reference SHJ solar cell, a conversion efficiency of 19.1% can be obtained. When the MoOx is used as a hole transport layer (HTL), the device indicates a desirable conversion efficiency of 17.5%. To the best of our knowledge, this current efficiency is the highest one for the MoOx film as HTL by RF sputtering.
Keywords:  radio-frequency magnetron sputtering      silicon heterojunction (SHJ) solar cell      MoOx      hole transport layer  
Received:  13 January 2022      Revised:  02 March 2022      Accepted manuscript online:  03 March 2022
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.H- (Solar cells (photovoltaics))  
  88.40.jj (Silicon solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62074084), the National Key Research and Development Program of China (Grant No. 2018YFB1500402), and Key Research and Development Program of Hebei Province, China (Grant No. 20314303D).
Corresponding Authors:  Qian Huang, Guofu Hou     E-mail:;

Cite this article: 

Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付) Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells 2022 Chin. Phys. B 31 098401

[1] Louwen A, Sark W V, Schropp R and Faaij A 2016 Sol. Energy Mater. Sol. Cells 147 295
[2] Cotter J E, Guo J H, Cousins P J, Abbott M D, Chen F W and Fisher K C 2006 IEEE Trans. Electron Devices 53 1893
[3] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37
[4] Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K and Ding K N 2018 Sol. Energy Mater. Sol. Cells 174 196
[5] Zhou J K, Zhang B Y, Chen J F, Ren H Z, Huang Q, Zhang X D, Hou G F and Zhao Y 2021 Appl. Phys. A 127 735
[6] Nogay G, Seif J P, Riesen Y, Tomasi A, Jeangros Q, Wyrsch N, Haug F J, Wolf S D and Ballif C 2016 IEEE J. Photovolt 6 1654
[7] Bivour M, Temmler J, Steinkemper H and Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34
[8] Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J and Lu Z H 2011 Nat. Mater. 11 76
[9] Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T and Kahn A 2012 Adv. Mater. 24 5408
[10] Oh W K, Hussain S Q, Lee Y J, Lee Y, Ahn S and Yi J 2012 Mater. Res. Bull. 47 3032
[11] Park Y S, Kim E, Hong B and Lee J 2013 Mater. Res. Bull. 48 5115
[12] Kim M, Kim J, Cho J, Kim H, Lee N and Choi B 2016 Mater. Res. Bull. 82 115
[13] Ghahfarokhi O M, Chakanga K, Geissendoerfer S, Sergeev O, Maydell K and Agert C 2015 Prog. Photovolt:Res. Appl. 23 1340
[14] Kim S, Jung J, Lee Y J, Ahn S, Hussain S Q, Park J, Song B S, Han S, Dao V A, Lee J and Yi J 2014 Mater. Res. Bull. 58 83
[15] Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J and Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221
[16] Masmitjá G, Ortega P, Puigdollers J, L. Gerling G, Martín I, Voz C and Alcubilla R 2018 J. Mater. Chem. A 6 3977
[17] Zheng S Z, Li W L, Su T T, Xie F Y, Chen J, Yang Z Y, Zhang Y, Liu S W, Aldred M P, Wong K Y, Xu J R and Chi Z G 2018 Sol. RRL 2 1700245
[18] Xu Z Y, Peng S L, Lin H, Tian S H, Wang Z L, He J, Cai L, Hou J and Gao P Q 2021 Sol. RRL 5 2100064
[19] Essig S, Dréon J, Rucavado E, Mews M, Koida T, Boccard M, Werner J, Geissbühler J, Löper P, Morales-Masis M, Korte L, Wolf S D and Ballif C 2018 Sol. RRL 2 1700227
[20] Battaglia C, Nicolás S M, Wolf S, Yin X T, Zheng M, Ballif C and Javey A 2014 Appl. Phys. Lett. 104 113902
[21] Hussain S Q, Mallem K, Kim Y J, Tuan Le A H, Khokhar M Q, Kim S, Dutta S, Sanyal S, Kim Y, Park J, Lee Y, Cho Y H, Cho E C and Yi J 2019 Mater. Sci. Semicond. Process. 91 267
[22] Bullock J, Wan Y M, Xu Z R, Essig S, Hettick M, Wang H C, Ji W B, Boccard M, Cuevas A, Ballif C and Javey A 2018 ACS Energy Lett. 3 508
[23] Shi J H, Shen L L, Liu Y W, Yu J, Liu J N, Zhang L P, Liu Y C, Bian J Y, Liu Z X and Meng F Y 2018 Mater. Res. Bull. 97 176
[24] Shrotriya V, Li G, Yao Y, Chu C W and Yang Y 2006 Appl. Phys. Lett. 88 073508
[25] Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutter-Fella C M, Chen T, Ota H, Schaler E W, Wolf S D, Ballif C, Cuevas A and Javey A 2016 Nature Energy 15031
[26] Klein A, Korber C, Wachau A, Sauberlich F, Gassenbauer Y, Harvey S P, Proffit D E and Mason T O 2010 Materials (Basel) 3 4892
[27] Wan Y M, Karuturi S K, Samundsett C, Bullock J, Hettick M, Yan D, Peng J, Narangari P R, Mokkapati S, Tan H H, Jagadish C, Javey A and Cuevas A 2017 ACS Energy Lett. 3 125
[28] Greiner M T and Lu Z H 2013 NPG Asia Mater. 5 e55
[29] Sian T S and Reddy G B 2005 J. Appl. Phys. 98 026104
[30] Sabhapathi V K, Hussain O M, Uthanna S, Naidu B S, Reddy P J, Julien C and Balkanski M 1995 Mater. Sci. Eng. B 32 93
[31] Ramana C V and Julien C M 2006 Chem. Phys. Lett. 428 114
[32] Uthanna S, Nirupama V and Pierson J F 2010 Appl. Surf. Sci. 256 3133
[33] SrinivasaRao K, Kanth B R and Mukhopadhyay P K 2009 Appl. Phys. A 96 985
[34] Navas I, Vinodkumar R, Lethy K J, Detty A P, Ganesan V, Sathe V and Mahadevan Pillai V P 2009 J. Phys. D 42 175305
[35] Mohamed S H and Venkataraj S 2007 Vacuum 81 636
[36] Dhanasankar M, Purushothaman K K and Muralidharan G 2011 Appl. Surf. Sci. 257 2074
[37] Boccard M, Ding L, Koswatta P, Bertoni M and Holman Z 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
[38] Bivour M, Zähringer F, Ndione P and Hermle M 2017 Energy Procedia 124 400
[39] Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C and Boccard M 2020 Nano Energy 70 104495
[1] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[2] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[3] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[4] Interfaces between MoOx and MoX2 (X = S, Se, and Te)
Fengming Chen(陈凤鸣), Jinxin Liu(刘金鑫), Xiaoming Zheng(郑晓明), Longhui Liu(刘龙慧), Haipeng Xie(谢海鹏), Fei Song(宋飞), Yongli Gao(高永立), and Han Huang(黄寒). Chin. Phys. B, 2020, 29(11): 116802.
[5] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei (王威), Shen Hong-Lie (沈鸿烈), Jin Jia-Le (金佳乐), Li Jin-Ze (李金泽), Ma Yue (马跃). Chin. Phys. B, 2015, 24(5): 056805.
[6] Increased performance of an organic light-emitting diode by employing a zinc phthalocyanine based composite hole transport layer
Guo Run-Da (郭闰达), Yue Shou-Zhen (岳守振), Wang Peng (王鹏), Chen Yu (陈宇), Zhao Yi (赵毅), Liu Shi-Yong (刘式墉). Chin. Phys. B, 2013, 22(12): 127304.
[7] Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer
Chen Shu-Fen (陈淑芬), Guo Xu (郭旭), Wu Qiang (邬强), Zhao Xiao-Fei (赵晓飞), Shao Ming (邵茗), Huang Wei (黄维). Chin. Phys. B, 2013, 22(12): 128506.
No Suggested Reading articles found!