Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳)1,2,3,4, Shengsheng Zhao(赵生盛)1,2,3,4, Qian Huang(黄茜)1,2,3,4,‡, Cao Yu(郁超)5, Jiakai Zhou(周佳凯)1,2,3,4, Xiaoning Liu(柳晓宁)1,2,3,4, Xianglin Su(苏祥林)1,2,3,4, Ying Zhao(赵颖)1,2,3,4, and Guofu Hou(侯国付)1,2,3,4,†
1 Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China; 2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China; 3 Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China; 4 Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, China; 5 Suzhou Maxwell Automation Equipment Co. Ltd, Suzhou 215299, China
Abstract The silicon heterojunction (SHJ) solar cell has long been considered as one of the most promising candidates for the next-generation PV market. Transition metal oxides (TMOs) show good carrier selectivity when combined with c-Si solar cells. This has led to the rapid demonstration of the remarkable potential of TMOs (especially MoOx) with high work function to replace the p-type a-Si:H emitting layer. MoOx can induce a strong inversion layer on the interface of n-type c-Si, which is beneficial to the extraction and conduction of holes. In this paper, the radio-frequency (RF) magnetron sputtering is used to deposit MoOx films. The optical, electrical and structural properties of MoOx films are measured and analyzed, with focus on the inherent compositions and work function. Then the MoOx films are applied into SHJ solar cells. When the MoOx works as a buffer layer between ITO/p-a-Si:H interface in the reference SHJ solar cell, a conversion efficiency of 19.1% can be obtained. When the MoOx is used as a hole transport layer (HTL), the device indicates a desirable conversion efficiency of 17.5%. To the best of our knowledge, this current efficiency is the highest one for the MoOx film as HTL by RF sputtering.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62074084), the National Key Research and Development Program of China (Grant No. 2018YFB1500402), and Key Research and Development Program of Hebei Province, China (Grant No. 20314303D).
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付) Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells 2022 Chin. Phys. B 31 098401
[1] Louwen A, Sark W V, Schropp R and Faaij A 2016 Sol. Energy Mater. Sol. Cells147 295 [2] Cotter J E, Guo J H, Cousins P J, Abbott M D, Chen F W and Fisher K C 2006 IEEE Trans. Electron Devices53 1893 [3] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Sol. Energy Mater. Sol. Cells173 37 [4] Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K and Ding K N 2018 Sol. Energy Mater. Sol. Cells174 196 [5] Zhou J K, Zhang B Y, Chen J F, Ren H Z, Huang Q, Zhang X D, Hou G F and Zhao Y 2021 Appl. Phys. A127 735 [6] Nogay G, Seif J P, Riesen Y, Tomasi A, Jeangros Q, Wyrsch N, Haug F J, Wolf S D and Ballif C 2016 IEEE J. Photovolt6 1654 [7] Bivour M, Temmler J, Steinkemper H and Hermle M 2015 Sol. Energy Mater. Sol. Cells142 34 [8] Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J and Lu Z H 2011 Nat. Mater.11 76 [9] Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T and Kahn A 2012 Adv. Mater.24 5408 [10] Oh W K, Hussain S Q, Lee Y J, Lee Y, Ahn S and Yi J 2012 Mater. Res. Bull.47 3032 [11] Park Y S, Kim E, Hong B and Lee J 2013 Mater. Res. Bull.48 5115 [12] Kim M, Kim J, Cho J, Kim H, Lee N and Choi B 2016 Mater. Res. Bull.82 115 [13] Ghahfarokhi O M, Chakanga K, Geissendoerfer S, Sergeev O, Maydell K and Agert C 2015 Prog. Photovolt:Res. Appl.23 1340 [14] Kim S, Jung J, Lee Y J, Ahn S, Hussain S Q, Park J, Song B S, Han S, Dao V A, Lee J and Yi J 2014 Mater. Res. Bull.58 83 [15] Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J and Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells168 221 [16] Masmitjá G, Ortega P, Puigdollers J, L. Gerling G, Martín I, Voz C and Alcubilla R 2018 J. Mater. Chem. A6 3977 [17] Zheng S Z, Li W L, Su T T, Xie F Y, Chen J, Yang Z Y, Zhang Y, Liu S W, Aldred M P, Wong K Y, Xu J R and Chi Z G 2018 Sol. RRL2 1700245 [18] Xu Z Y, Peng S L, Lin H, Tian S H, Wang Z L, He J, Cai L, Hou J and Gao P Q 2021 Sol. RRL5 2100064 [19] Essig S, Dréon J, Rucavado E, Mews M, Koida T, Boccard M, Werner J, Geissbühler J, Löper P, Morales-Masis M, Korte L, Wolf S D and Ballif C 2018 Sol. RRL2 1700227 [20] Battaglia C, Nicolás S M, Wolf S, Yin X T, Zheng M, Ballif C and Javey A 2014 Appl. Phys. Lett.104 113902 [21] Hussain S Q, Mallem K, Kim Y J, Tuan Le A H, Khokhar M Q, Kim S, Dutta S, Sanyal S, Kim Y, Park J, Lee Y, Cho Y H, Cho E C and Yi J 2019 Mater. Sci. Semicond. Process.91 267 [22] Bullock J, Wan Y M, Xu Z R, Essig S, Hettick M, Wang H C, Ji W B, Boccard M, Cuevas A, Ballif C and Javey A 2018 ACS Energy Lett.3 508 [23] Shi J H, Shen L L, Liu Y W, Yu J, Liu J N, Zhang L P, Liu Y C, Bian J Y, Liu Z X and Meng F Y 2018 Mater. Res. Bull.97 176 [24] Shrotriya V, Li G, Yao Y, Chu C W and Yang Y 2006 Appl. Phys. Lett.88 073508 [25] Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutter-Fella C M, Chen T, Ota H, Schaler E W, Wolf S D, Ballif C, Cuevas A and Javey A 2016 Nature Energy 15031 [26] Klein A, Korber C, Wachau A, Sauberlich F, Gassenbauer Y, Harvey S P, Proffit D E and Mason T O 2010 Materials (Basel)3 4892 [27] Wan Y M, Karuturi S K, Samundsett C, Bullock J, Hettick M, Yan D, Peng J, Narangari P R, Mokkapati S, Tan H H, Jagadish C, Javey A and Cuevas A 2017 ACS Energy Lett.3 125 [28] Greiner M T and Lu Z H 2013 NPG Asia Mater.5 e55 [29] Sian T S and Reddy G B 2005 J. Appl. Phys.98 026104 [30] Sabhapathi V K, Hussain O M, Uthanna S, Naidu B S, Reddy P J, Julien C and Balkanski M 1995 Mater. Sci. Eng. B32 93 [31] Ramana C V and Julien C M 2006 Chem. Phys. Lett.428 114 [32] Uthanna S, Nirupama V and Pierson J F 2010 Appl. Surf. Sci.256 3133 [33] SrinivasaRao K, Kanth B R and Mukhopadhyay P K 2009 Appl. Phys. A96 985 [34] Navas I, Vinodkumar R, Lethy K J, Detty A P, Ganesan V, Sathe V and Mahadevan Pillai V P 2009 J. Phys. D42 175305 [35] Mohamed S H and Venkataraj S 2007 Vacuum81 636 [36] Dhanasankar M, Purushothaman K K and Muralidharan G 2011 Appl. Surf. Sci.257 2074 [37] Boccard M, Ding L, Koswatta P, Bertoni M and Holman Z 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) [38] Bivour M, Zähringer F, Ndione P and Hermle M 2017 Energy Procedia124 400 [39] Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C and Boccard M 2020 Nano Energy70 104495
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.