Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018503    DOI: 10.1088/1674-1056/ac6dbf

High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack

Wen Xiong(熊文)1, Jing-Yong Huo(霍景永)1, Xiao-Han Wu(吴小晗)1, Wen-Jun Liu(刘文军)1,†, David Wei Zhang(张卫)1,2, and Shi-Jin Ding(丁士进)1,2,‡
1 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China;
2 National Integrated Circuit Innovation Center, Shanghai 201203, China
Abstract  Amorphous In-Ga-Zn-O (a-IGZO) thin-film transistor (TFT) memories with novel p-SnO/n-SnO2 heterojunction charge trapping stacks (CTSs) are investigated comparatively under a maximum fabrication temperature of 280 ℃. Compared to a single p-SnO or n-SnO2 charge trapping layer (CTL), the heterojunction CTSs can achieve electrically programmable and erasable characteristics as well as good data retention. Of the two CTSs, the tunneling layer/p-SnO/n-SnO2/blocking layer architecture demonstrates much higher program efficiency, more robust data retention, and comparably superior erase characteristics. The resulting memory window is as large as 6.66 V after programming at 13 V/1 ms and erasing at -8 V/1 ms, and the ten-year memory window is extrapolated to be 4.41 V. This is attributed to shallow traps in p-SnO and deep traps in n-SnO2, and the formation of a built-in electric field in the heterojunction.
Keywords:  nonvolatile memory      a-IGZO thin-film transistor (TFT)      charge trapping stack      p-SnO/n-SnO2 heterojunction  
Received:  11 January 2022      Revised:  31 March 2022      Accepted manuscript online:  07 May 2022
PACS:  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  85.35.-p (Nanoelectronic devices)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874029).
Corresponding Authors:  Wen-Jun Liu, Shi-Jin Ding     E-mail:;

Cite this article: 

Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进) High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack 2023 Chin. Phys. B 32 018503

[1] Ding S J and Wu X 2020 Chem. Mater. 32 1343
[2] Gao H Y, Yao Q X, Liu P, Zheng Z Q, Liu J C, Zheng H D, Zeng C, Yu Y J, Sun T and Zeng Z X 2016 Chin. Phys. B 25 094203
[3] Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305
[4] Yu G, Wu C F, Lu H, Ren F F, Zhang R, Zheng Y D and Huang X M 2015 Chin. Phys. Lett. 32 047302
[5] Cui X M, Chen S, Ding S J, Sun Q Q, Nyberg T, Zhang S L and Zhang W 2013 IEEE Electron Dev. Lett. 34 1011
[6] Qian S B, Shao Y, Liu W J, Zhang D W and Ding S J 2017 IEEE Transactions on Electron Dev. 64 3023
[7] Jang J, Park J C, Kong D, Kim D M, Lee J S, Sohn B H, Cho I H and Kim D H 2011 IEEE Trans. Electron Dev. 58 3940
[8] Chen S, Cui X M, Ding S J, Sun Q Q, Nyberg T, Zhang S L and Zhang W 2013 IEEE Electron Dev. Lett. 34 1008
[9] Pan T M, Chen C H, Hu Y H and Her J L 2016 IEEE Trans. Electron Dev. 63 1539
[10] Kim E, Kim Y, Han Kim D, Lee K, Parsons G N and Park K 2011 Appl. Phys. Lett. 99 112115
[11] Yin H, Kim S, Lim H, Min Y, Kim C J, Song I, Park J, Kim S W, Tikhonovsky A and Hyun J 2008 IEEE Trans. Electron Dev. 55 2071
[12] Zhang W P, Qian S B, Liu W J, Ding S J and Zhang D W 2015 IEEE Electron Dev. Lett. 36 1021
[13] Yun D J, Kang H B and Yoon S M 2016 IEEE Trans. Electron Dev. 63 3128
[14] Liu D D, Liu W J, Pei J X, Xie L Y, Huo J, Wu X and Ding S J 2019 Nanoscale Res. Lett. 14 363
[15] Liu D D, Pei J, Li L, Huo J, Wu X, Liu W J and Ding S J 2020 J. Mater. Res. 35 732
[16] Bak J Y, Ryu M K, Park S H K, Hwang C S and Yoon S M 2014 IEEE Trans. Electron Dev. 61 2404
[17] Bai B, Wang H, Li Y, Hao Y, Zhang B, Wang B, Wang Z, Yang H, Gao Q and Lü C 2019 Chin. Phys. B 28 106802
[18] Themlin J M, Sporken R, Darville J, Caudano R, Gilles J and Johnson R 1990 Phys. Rev. B 42 11914
[19] Tao Y, Zhu B, Yang Y, Wu J and Shi X 2020 Mater. Chem. Phys. 250 123129
[20] Allen J P, Scanlon D O, Piper L F and Watson G W 2013 J. Mater. Chem. C 1 8194
[21] Mondal S and Venkataraman V 2019 Appl. Phys. Lett. 114 173502
[22] Su N C, Wang S J and Chin A 2010 IEEE Electron Dev. Lett. 31 201
[23] Ji H, Wei Y, Zhang X and Jiang R 2017 Appl. Phys. Lett. 111 202102
[1] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[2] Improved performance of Au nanocrystal nonvolatile memory by N2-plasma treatment on HfO2 blocking layer
Chen Wang(王尘), Yi-Hong Xu(许怡红), Song-Yan Chen(陈松岩), Cheng Li(李成), Jian-Yuan Wang(汪建元), Wei Huang(黄巍), Hong-Kai Lai(赖虹凯), Rong-Rong Guo(郭榕榕). Chin. Phys. B, 2018, 27(6): 067303.
[3] Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda. Chin. Phys. B, 2016, 25(9): 097304.
[4] Surface-type nonvolatile electric memory elements based on organic-on-organic CuPc-H2Pc heterojunction
Khasan S. Karimov, Zubair Ahmad, Farid Touati, M. Mahroof-Tahir, M. Muqeet Rehman, S. Zameer Abbas. Chin. Phys. B, 2015, 24(11): 116102.
[5] Low voltage program-erasable Pd-Al2O3-Si capacitors with Ru nanocrystals for nonvolatile memory application
Lan Lan (蓝澜), Gou Hong-Yan (苟鸿雁), Ding Shi-Jin (丁士进), Zhang Wei (张卫). Chin. Phys. B, 2013, 22(11): 117308.
[6] Preparation of size controllable copper nanocrystals for nonvolatile memory applications
Wang Li(王利), Sun Hong-Fang(孙红芳), Zhou Hui-Hua(周惠华), and Zhu Jing(朱静). Chin. Phys. B, 2010, 19(10): 108102.
[7] Novel material for nonvolatile ovonic unified memory (OUM)-Ag11In12Te26Sb51 phase change semiconductor
Liu Bo (刘波), Song Zhi-Tang (宋志棠), Zhang Ting (张挺), Feng Song-Lin (封松林), Gan Fu-Xi (干福熹). Chin. Phys. B, 2004, 13(7): 1167-1170.
No Suggested Reading articles found!