|
|
In situ temperature measurement of vapor based on atomic speed selection |
Lu Yu(于露)1, Li Cao(曹俐)1,†, Ziqian Yue(岳子骞)1, Lin Li(李林)1, and Yueyang Zhai(翟跃阳)2,‡ |
1 School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China; 2 Research Institute of Frontier Science, Beihang University, Beijing 100191, China |
|
|
Abstract We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position of the crossover peaks can move along the spectrum. Different velocity classes of atoms contribute to the crossover during the movement. We study the relationship between the intensity change of peaks and vapor temperature. Our experimental result around room temperature shows a deviation of less than 0.3 K. Compared with traditional thermometry using absorption spectroscopy, higher accuracy can theoretically be achieved with real-time thermometry.
|
Received: 07 May 2022
Revised: 12 July 2022
Accepted manuscript online: 22 July 2022
|
PACS:
|
06.30.-k
|
(Measurements common to several branches of physics and astronomy)
|
|
42.55.-f
|
(Lasers)
|
|
42.50.-p
|
(Quantum optics)
|
|
43.28.Vd
|
(Measurement methods and instrumentation to determine or evaluate Atmospheric parameters, winds, turbulence, temperatures, and pollutants in air)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61703025). |
Corresponding Authors:
Li Cao, Yueyang Zhai
E-mail: caoli722@buaa.edu.cn;yueyangzhai@buaa.edu.cn
|
Cite this article:
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳) In situ temperature measurement of vapor based on atomic speed selection 2023 Chin. Phys. B 32 020602
|
[1] Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L and Kitching J 2005 Opt. Lett. 30 2351 [2] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701 [3] Allred J C, Lyman R N, Kornack T W and Michael V R 2002 Phys. Rev. Lett. 89 130801 [4] Kominis I K, Kornack T W, Allred J C and Michael V R 2003 Nature 422 596 [5] Du P C, Li J J, Yang S J, Wang X T, Zhuo Y, Wang F and Wang R Q 2019 Chin. Phys. B 28 040702 [6] Tang J J, Zhai Y Y, Cao L, Zhang Y H, Li L, Zhao B B, Zhou B Q, Han B C and Liu G 2021 Opt. Express 29 15641 [7] Daussy C, Guinet M, Amy-Klein A, Djerroud K, Hermier Y, Briaudeau S, Bordé C J and Chardonnet C 2007 Phys. Rev. Lett. 98 250801 [8] Bo Y, Chen L, Li M, Chen S, Gong C, Yang F R, Wu Y G, Zhou J N and Mu J 2020 Chin. Phys. B 29 024701 [9] Dutta M, Rakshit A and Bhattacharyya S N 2001 IEEE Trans. Instrum. Meas. 50 1048 [10] Zhang Q, Wang Y H, Zhang M J, Zhang J Z, Qiao L J, Wang T and Zhao L 2019 Acta Phys. Sin. 68 104208 (in Chinese) [11] Han J H, Wang Y, Cai H, An G F, Zhang W, Xue L P, Wang H Y, Zhou J, Jiang Z G and Gao M 2015 Opt. Express 23 9508 [12] Jia C H, Cao M, Ji T T, Jiang D W and Gao C X 2022 Chin. Phys. B 31 040701 [13] Shaffer M K, Lilly T C, Zhdanov B V and Knize R J 2015 Opt. Lett. 40 119 [14] Hu J J, Zhang S M, Li D Y, Zhang F, Feng M X, Wen P Y, Liu J P, Zhang L Q and Yang H 2018 Chin. Phys. B 27 094208 [15] Cai H, Wang Y, Gao M, Zhang W, Jiang Z G, Han J H, An G F, Wang S Y, Xue L P, Wang H Y and Zhou J 2016 High Power Laser Sci. Eng. 4 e38 [16] Shen B L, Xu X Q, Xia C S and Pan B L 2016 Opt. Commun. 368 43 [17] Kamimoto T, Deguchi Y and Kiyota Y 2015 Flow Meas. Instrum. 46 51 [18] Xu W, Li C R, Cao B S and Dong B 2010 Chin. Phys. B 19 127804 [19] Murzyn C M, Sims A W, Krier H W and Glumac N G 2018 Opt. Lasers Eng. 110 186 [20] Shao J, Lathdavong L, Kluczynski P, Lundqvist S and Axner O 2009 Appl. Phys. B 97 727 [21] Machin G 2018 Meas. Sci. Technol. 29 022001 [22] Truong G W, May E F, Stace T M and Luiten A N 2011 Phys. Rev. A 83 033805 [23] Truong G W, Anstie J D, May E F, Stace T M and Luiten A N 2015 Nat. Commun. 6 8345 [24] Gianfrani L 2016 Philos. Trans. Royal Soc. A 374 20150047 [25] Preston D W 1996 Am. J. Phys. 64 1432 [26] Duan J, Qi X H, Zhou X J and Chen X Z 2011 Opt. Lett. 36 561 [27] Yu H, Kim K S, Kim J D, Lee H K and Kim J B 2011 Phys. Rev. A 84 052511 [28] Cheng X M, Miao Y Z, Chen H W, Zheng X, Yin X L, Bai J T, Zhao P and Ren Z Y 2014 J. Opt. 43 188 [29] Nakayama S 1984 Jpn. J. Appl. Phys. 23 879 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|