Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020702    DOI: 10.1088/1674-1056/ac9de3
GENERAL Prev   Next  

Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure

Ling-Ling Li(李玲玲)1, Yong Wei(魏勇)1,†, Chun-Lan Liu(刘春兰)1, Zhuo Ren(任卓)1, Ai Zhou(周爱)2, Zhi-Hai Liu(刘志海)3, and Yu Zhang(张羽)3
1 College of Electronic&Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
2 National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan 430070, China;
3 Key Laboratory of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001, China
Abstract  To address the restriction of fiber-optic surface plasmon resonance (SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region; the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area; it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333-1.365 and 1.375-1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.
Keywords:  coaxial dual-waveguide      optical fiber D structure      optical fiber microsphere structure      dual-channel fiber-optic surface plasmon resonance (SPR) sensor  
Received:  08 July 2022      Revised:  28 September 2022      Accepted manuscript online:  27 October 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61705025), the Natural Science Foundation of Chongqing (Grant Nos. cstc2019jcyjmsxmX043 and cstc2018jcyjAX0817), the Fund from the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant Nos. KJQN201801217, KJQN202001214, KJQN201901226, and KJ1710247), the Fund from Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area (Grant Nos. ZD2020A0103 and ZD2020A0102), and the Fundamental Research Funds for Chongqing Three Gorges University of China (Grant No. 19ZDPY08).
Corresponding Authors:  Yong Wei     E-mail:  weiyong@hrbeu.edu.cn

Cite this article: 

Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽) Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure 2023 Chin. Phys. B 32 020702

[1] Peeters B, Daems D, Van der Donck T, Delport F and Lammertyn J 2019 ACS Appl. Mater. 11 6759
[2] Chen Z, Han K and Zhang Y N 2019 Appl. Sci. 9 1480
[3] Narsaiah K, Jha S N, Bhardwaj R, Sharma R and Kumar R 2012 J. Food Sci. 49 383
[4] Kretschmann E and Raether H 1968 Zeitschrift für Naturforschung A 23 2135
[5] Liu Z, Wei Y, Zhang Y, Sun B, Zhao E, Zhang Y, Yang J and Yuan L 2015 Sensors Actuators B: Chemical 221 1330
[6] Liu Z, Wei Y, Zhang Y, Liu C, Zhang Y, Zhao E, Yang J, Liu C and Yuan L 2015 Opt. Lett. 40 4452
[7] Liu Z, Wei Y, Zhang Y, Zhang Y, Zhao E, Yang J and Yuan L 2015 Opt. Lett. 40 2826
[8] Liu C, Zhang X, Gao Y, Wei Y, Wu P, Su Y and Wu P 2020 Appl. Opt. 59 1323
[9] Zhou X, Li S, Li X, Yan X, Zhang X, Wang F and Cheng T 2020 IEEE Trans. Instrum. Measur. 69 8494
[10] Zhang Y, Liang P, Wang Y, Zhang Y, Liu Z, Wei Y, Zhu Z, Zhao E, Yang J and Yuan L 2017 Sensors Actuators A: Physical 267 526
[11] Yu H, Chong Y, Zhang P, Ma J and Li D 2020 Talanta 219 121324
[12] Sun Y S, Li C J and Hsu J C 2016 Sensors 17 63
[13] Singh S, Srivastava A, Pandey S K and Prajapati Y K 2022 Recent Trends in Electronics and Communication (Springer) p. 299
[14] Vindas K, Leroy L, Garrigue P, Voci S, Livache T, Arbault S, Sojic N, Buhot A and Engel E 2019 Analytical Bioanalytical Chemistry 411 2249
[15] Coelho L C C, de Almeida J M M M, Moayyed H, Santos J L and Viegas D 2015 Journal of Lightwave Technology 33 432
[16] Korec J, Stasiewicz K A, Jaroszewicz L R and Garbat K 2020 Materials 13 4942
[17] Al-Qazwini Y, Noor A, Yaacob M H, Harun S W and Mahdi M 2015 Sensors Actuators A: Physical 236 38
[18] Wu Z, Shum P P, Shao X, Zhang H, Zhang N, Huang T, Humbert G, Auguste J L, Gérome F and Blondy J M 2016 Opt. Lett. 41 380
[19] Nasirifar R, Danaie M and Dideban A 2019 Optik 186 194
[20] Wang R, Liu C, Wei Y, Jiang T, Liu C, Shi C, Zhao X and Li L 2022 Optik 266 169603
[21] Jiao S, Ren X, Yang H, Xu S and Li X 2022 Plasmonics 17 295
[22] Wei Y, Zhao X, Liu C, Wang R, Jiang T, Li L, Shi C, Liu C and Zhu D 2023 Chin. Phys. B 32 030702
[23] Liu Z, Liu L, Zhu Z, Zhang Y, Wei Y, Zhang Y, Yang J and Yuan L 2017 Opt. Commun. 403 290
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[5] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[6] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[7] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[8] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[9] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[12] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[13] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[14] Effect of staggered array structure on the flow field of micro gas chromatographic column
Daohan Ge(葛道晗), Zhou Hu(胡州), Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(1): 010701.
[15] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
No Suggested Reading articles found!