CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse |
Li-Li Yang(杨莉莉)1,2, Yu-Si Peng(彭宇思)3, Zeng Liu(刘增)1,2, Mao-Lin Zhang(张茂林)1,2, Yu-Feng Guo(郭宇锋)1,2, Yong Yang(杨勇)3, and Wei-Hua Tang(唐为华)1,2,† |
1 College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract A self-powered solar-blind ultraviolet (UV) photodetector (PD) was successfully constructed on a Ga$_{2}$O$_{3}$/Bi$_{2}$WO$_{6}$ heterojunction, which was fabricated by spin-coating the hydrothermally grown Bi$_{2}$WO$_{6}$ onto MOCVD-grown Ga$_{2}$O$_{3}$ film. The results show that a typical type-I heterojunction is formed at the interface of the Ga$_{2}$O$_{3}$ film and clustered Bi$_{2}$WO$_{6}$, which demonstrates a distinct photovoltaic effect with an open-circuit voltage of 0.18 V under the irradiation of 254 nm UV light. Moreover, the Ga$_{2}$O$_{3}$/Bi$_{2}$WO$_{6}$ PD displays excellent photodetection performance with an ultra-low dark current of $\sim 6 $ fA, and a high light-to-dark current ratio (PDCR) of $3.5\times 10^{4}$ in self-powered mode (0 V), as well as a best responsivity result of 2.21 mA/W in power supply mode (5 V). Furthermore, the PD possesses a stable and fast response speed under different light intensities and voltages. At zero voltage, the PD exhibits a fast rise time of 132 ms and 162 ms, as well as a quick decay time of 69 ms and 522 ms, respectively. In general, the newly attempted Ga$_{2}$O$_{3}$/Bi$_{2}$WO$_{6}$ heterojunction may become a potential candidate for the realization of self-powered and high-performance UV photodetectors.
|
Received: 31 March 2022
Revised: 10 June 2022
Accepted manuscript online: 14 June 2022
|
PACS:
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3605404), Natural Science Research Start up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921119, XK1060921115, and XK1060921002), National Natural Science Foundation of China (Grant No. 62204125), and China Postdoctoral Science Foundation (Grant No. 2022M721689). |
Corresponding Authors:
Wei-Hua Tang
E-mail: whtang@njupt.edu.cn
|
Cite this article:
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华) A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse 2023 Chin. Phys. B 32 047301
|
[1] Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G and Tang W H 2019 J. Mater. Chem. C 7 13920 [2] Kaur D and Kumar M 2021 Adv. Opt. Mater. 9 2002160 [3] Razeghi M 2002 Proc. IEEE 90 1006 [4] Takeuchi I, Yang W, Chang K S, Aronova M A, Venkatesan T, Vispute R D and Bendersky L A 2003 J. Appl. Phys. 94 7336 [5] Zhou H T, Cong L J, Ma J G, Chen M Z, Song D Y, Wang H B, Li P, Li B S, Xu H Y and Liu Y C 2020 J. Alloys Compd. 847 156536 [6] Hou X H, Zhao X L, Zhang Y, Zhang Z F, Liu Y, Qin Y, Tan P J, Chen C, Yu S J and Ding M F 2022 Adv. Mater. 34 2106923 [7] Han Z Y, Liang H L, Huo W X, Zhu X S, Du X L and Mei Z X 2020 Adv. Opt. Mater. 8 1901833 [8] Roy R, Hill V G and Osborn E F 1952 J. Am. Chem. Soc. 74 719 [9] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G and Guo Y F 2022 Chin. Phys. B 31 088503 [10] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105 [11] Qin Y, Long S B, Dong H, He Q M, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F and Lv H B 2019 Chin. Phys. B 28 018501 [12] Zhang M L, Liu Z, Yang L L, Yao J F, Chen J, Zhang J, Wei W, Guo Y F and Tang W H 2022 Crystals 12 406 [13] Mastro M A, Kuramata A, Calkins J, Kim J, Ren F and Pearton S J 2017 ECS J. Solid State Sci. Technol. 6 P356 [14] Oshima Y, Vllora E G and Shimamura K 2015 J. Cryst. Growth 410 53 [15] Gao A, Jiang W Y, Ma G L, Liu Z, Li S, Yan Z Y, Sun W M, Zhang S H and Tang W H 2022 Curr. Appl. Phys. 33 20 [16] Li S, Yan Z Y, Liu Z, Chen J, Zhi Y S, Guo D Y, Li P G, Wu Z P and Tang W H 2020 J. Mater. Chem. C 8 1292 [17] Li S, Yue J Y, Wu C, Liu Z, Yan Z Y, Li P G, Guo D Y, Wu Z P, Guo Y F and Tang W H 2021 IEEE Sens. J. 21 26724 [18] Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X L, Guo D Y and Li P G 2021 J. Phys. Chem. Lett. 12 447 [19] Ma G L, Jiang W Y, Sun W M, Yan Z Y, Sun B Y, Li S, Zhang M L, Wang X, Gao A and Dai J 2021 Phys. Scr. 96 125823 [20] Sun W M, Sun B Y, Li S, Ma G L, Gao A, Jiang W Y, Zhang M L, Li P G, Liu Z and Tang W H 2021 Chin. Phys. B 31 024205 [21] Yan Z Y, Li S, Liu Z, Liu W J, Qiao F, Li P G, Tang X, Li X H, Yue J Y and Guo Y F 2022 IEEE J. Sel. Top. Quantum Electron. 28 3803208 [22] Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X and Fang X S 2017 Adv. Funct. Mater. 27 1700264 [23] Liu Z, Liu Y Y, Wang X, Li W J, Zhi Y S, Wang X L, Li P G and Tang W H 2019 J. Appl. Phys. 126 045707 [24] Sun B Y, Sun W M, Li S, Ma G L, Jiang W Y, Yan Z Y, Wang X, An Y H, Li P G and Liu Z 2022 Opt. Commun. 504 127483 [25] Yan Z Y, Li S, Yue J Y, Ji X Q, Liu Z, Yang Y T, Li P G, Wu Z P, Guo Y F and Tang W H 2021 J. Mater. Chem. C 9 14788 [26] Yan Z Y, Li S, Yue J Y, Liu Z, Ji X Q, Yang Y T, Li P G, Wu Z P, Guo Y F and Tang W H 2021 ACS Appl. Mater. Interfaces 13 57619 [27] Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F and Tang W H 2022 IEEE Trans. Electron Devices 69 2443 [28] Zhang X L, Wang H W, Zhang J, Li J X, Ma Z Y, Li J, Leng B, Niu P J and Liu B D 2020 Nano Energy 77 105119 [29] Chen M X, Zhao B, Hu G F, Fang X S, Wang H, Wang L, Luo J, Han X, Wang X D and Pan C F 2018 Adv. Funct. Mater. 28 1706379 [30] Nie J H, Zhang Y, Li L J and Wang J Z 2020 J. Mater. Chem. C 8 2709 [31] Xu X, Ming F W, Hong J Q and Wang Z C 2018 ACS Mater. Lett. 9 188 [32] Ma J L, Xia X C, Yan S, Li Y, Liang W Q, Yan J J, Chen X, Wu D, Li X J and Shi Z F 2021 ACS Appl. Mater. Interfaces 13 15409 [33] Li S, Guo D Y, Li P G, Wang X, Wang Y H, Yan Z Y, Liu Z, Zhi Y S, Huang Y Q and Wu Z P 2019 ACS Appl. Mater. Interfaces 11 35105 [34] Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W and Tang W H 2017 J. Mater. Chem. C 5 10562 [35] Cui Y H, Zhang S H, Shi Q S, Hao S C, Bian A, Xie X B and Liu Z 2021 Phys. Scr. 96 125844 [36] Dong L P, Pang T Q, Yu J G, Wang Y C, Zhu W G, Zheng H D, Yu J H, Jia R X and Chen Z 2019 J. Mater. Chem. C 7 14205 [37] Pang T Q, Jia R X, Wang Y C, Sun K, Hu Z Y, Zhu Y J, Luan S Z and Zhang Y M 2018 Materials 11 1606 [38] Zhu X J, Lee J H and Lu W D 2017 Adv. Mater. 29 1700527 [39] Islam M S, Lazure S, Vannier R N, Nowogrocki G and Mairesse G 1998 J. Mater. Chem. 8 655 [40] Šlkus T, Štas L, Kežonis A, Kodols M, Grabis J, Vikhrenko V, Gunes V and Barre M 2015 Solid State Ionics 271 73 [41] Yakimov A V, Filatov D O, Gorshkov O N, Antonov D A, Liskin D A, Antonov I N, Belyakov A V, Klyuev A V, Carollo A and Spagnolo B 2019 Appl. Phys. Lett. 114 253506 [42] Hao W B, He Q M, Zhou K, Xu G W, Xiong W H, Zhou X Z, Jian G Z, Chen C, Zhao X L and Long S B 2021 Appl. Phys. Lett. 118 043501 [43] Park Y, Ma J, Yoo G and Heo J 2021 Nanomaterials 11 494 [44] Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501 [45] Chen X H, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S L, Zhang R and Zheng Y D 2017 ACS Appl. Mater. Interfaces 9 36997 [46] Wang H L, Li S J, Zhang L S, Chen Z G, Hu J Q, Zou R J, Xu K B, Song G S, Zhao H H and Yang J M 2013 CrystEngComm 15 9011 [47] Klein A 2012 Thin Solid Films 520 3721 [48] Yu J, Nie Z, Dong L, Yuan L, Li D, Huang Y, Zhang L, Zhang Y and Jia R 2019 J. Alloys Compd. 798 458 [49] Kim H, Tarelkin S, Polyakov A, Troschiev S, Nosukhin S, Kuznetsov M and Kim J 2020 ECS J. Solid State Sci. Technol. 9 045004 [50] Yu J G, Yu M, Wang Z, Yuan L, Huang Y, Zhang L C, Zhang Y M and Jia R X 2020 IEEE Trans. Electron Devices 67 3199 [51] Zhang D, Zheng W, Lin R C, Li Y Q and Huang F 2019 Adv. Funct. Mater. 29 1900935 [52] Zhuo R R, Wu D, Wang Y G, Wu E P, Jia C, Shi Z F, Xu T T, Tian Y T and Li X J 2018 J. Mater. Chem. C 6 10982 [53] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|