Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087101    DOI: 10.1088/1674-1056/ac5c3b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain

Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉)
College of Big Data and Information Engineering, Institute of New Optoelectronic Materials and Technology, Guizhou University, Guiyang 550025, China
Abstract  Reducing the Schottky barrier height (SBH) and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices. In this paper, the modulation effects of biaxial strain on the electronic properties and Schottky barrier of MoSi2N4 (MSN)/graphene and WSi2N4 (WSN)/graphene heterojunctions are examined by using first principles calculations. After the construction of heterojunctions, the electronic structures of MSN, WSN, and graphene are well preserved. Herein, we show that by applying suitable external strain to a heterojunction stacked by MSN or WSN — an emerging two-dimensional (2D) semiconductor family with excellent mechanical properties — and graphene, the heterojunction can be transformed from Schottky p-type contacts into n-type contacts, even highly efficient Ohmic contacts, making it of critical importance to unleash the tremendous potentials of graphene-based van der Waals (vdW) heterojunctions. Not only are these findings invaluable for designing high-performance graphene-based electronic devices, but also they provide an effective route to realizing dynamic switching either between n-type and p-type Schottky contacts, or between Schottky contacts and Ohmic contacts.
Keywords:  MoSi2N4      Schottky barrier height      heterojunction      biaxial strain  
Received:  29 November 2021      Revised:  15 February 2022      Accepted manuscript online:  10 March 2022
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
Fund: One of the authors, Qian Liang, would like to thank his supervisor, Professor Quan Xie for guidance, and also his friends and colleagues for their cooperation. Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University, China (Grant No. 2020-520000-83-01-324061), the National Natural Science Foundation of China (Grant No. 61264004), and the High-level Creative Talent Training Program in Guizhou Province, China (Grant No.[2015]4015).
Corresponding Authors:  Quan Xie     E-mail:  qxie@gzu.edu.cn

Cite this article: 

Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉) Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain 2022 Chin. Phys. B 31 087101

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T and Li Y 2017 Extreme Mechanics Letters 13 42
[3] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K and Taniguchi T 2011 Nano Lett. 11 2396
[4] Haaf M, Schmiedl A, Schmedake T A, Powell D R, Millevolte A J, Denk M and West R 1998 J. Am. Chem. Soc. 120 12714
[5] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
[6] Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
[7] Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H and Juang Z Y 2010 Nano Lett. 10 4134
[8] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 1
[9] Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296
[10] Ramakrishna Matte H, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C 2010 Angewandte Chemie International Edition 49 4059
[11] Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T and Zhang H 2013 Small 9 1974
[12] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[13] Lembke D, Bertolazzi S and Kis A 2015 Acc. Chem. Res. 48 100
[14] Li T and Galli G 2007 J. Phys. Chem. C 111 16192
[15] Pham T, Li G, Bekyarova E, Itkis M E and Mulchandani A 2019 ACS Nano 13 3196
[16] Liu W, Luo C, Tang X, Peng X and Zhong J 2019 AIP Adv. 9 045222
[17] Si C, Lin Z, Zhou J and Sun Z 2016 2D Mater. 4 015027
[18] Huang Z, Han W, Tang H, Ren L, Chander D S, Qi X and Zhang H 2015 2D Mater. 2 035011
[19] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
[20] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L and Sun D M 2020 Science 369 670
[21] Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V and Zhuang X 2021 Nano Energy 82 105716
[22] Wu Q, Cao L, Ang Y S and Ang L K 2021 Appl. Phys. Lett. 118 113102
[23] Jian C C, Ma X, Zhang J and Yong X 2021 J. Phys. Chem. C 125 15185
[24] Zang Y, Wu Q, Du W, Dai Y, Huang B and Ma Y 2021 Phys. Rev. Mater. 5 045801
[25] Qian W, Chen Z, Zhang J and Yin L 2022 J. Mater. Sci. Technol. 99 215
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[31] Yang C, Song Z, Sun X and Lu J 2021 Phys. Rev. B 103 035308
[32] Li Q, Zhou W, Wan X and Zhou J 2021 Physica E 131 114753
[33] Li H, Zhou Z and Wang H 2020 Nanotechnology 31 335201
[34] Gao X, Shen Y, Ma Y, Wu S and Zhou Z 2019 Comput. Mater. Sci. 170 109200
[35] Liu X, Zhang Z, Luo Z, Lv B and Ding Z 2019 Nanomaterials 9 1674
[36] Ahn J H and Je J H 2012 J. Phys. D:Appl. Phys. 45 103001
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[13] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
No Suggested Reading articles found!