CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell |
Xue-Fei Li(李雪飞)1,2, Wen-Xian Yang(杨文献)2, Jun-Hua Long(龙军华)2, Ming Tan(谭明)1,2, Shan Jin(金山)2, Dong-Ying Wu(吴栋颖)2, Yuan-Yuan Wu(吴渊渊)2, and Shu-Long Lu(陆书龙)1,2,† |
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; 2 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract The internal behaviors of carriers in InGaAsP single-junction solar cell are investigated by using electroluminescence (EL) measurements. Two emission peaks can be observed in current-dependent electroluminescence spectra at low temperatures, and carrier localization exists for both peaks under low excitation. The trends of power index α extracted from excitation-dependent EL spectra at different temperatures imply that there exists a competition between Shockley-Read-Hall recombination and Auger recombination. Auger recombination becomes dominant at high temperatures, which is probably responsible for the lower current density of InGaAsP solar cell. Besides, the anomalous "S-shape" tendency with the temperature of band-edge peak position can be attributed to potential fluctuation and carrier redistribution, demonstrating delocalization, transfer, and redistribution of carriers in the continuum band-edge. Furthermore, the strong reduction of activation energy at high excitations indicates that electrons and holes escaped independently, and the faster-escaping carriers are holes.
|
Received: 01 February 2022
Revised: 26 May 2022
Accepted manuscript online: 29 May 2022
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
Fund: Project supported by the National Key Research and Development Program, China (Grant No. 2018YFB2003305), the National Natural Science Foundation of China (Grant Nos. 61774165 and 61827823), and the Key Laboratory Fund in Suzhou Institute of Suzhou Nano-Tech and NanoBionis (SINANO), Chinese Academy of Sciences (Grant No. Y4JAQ21005). |
Corresponding Authors:
Shu-Long Lu
E-mail: sllu2008@sinano.ac.cn
|
Cite this article:
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙) Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell 2023 Chin. Phys. B 32 017801
|
[1] Campbell J, Holden W, Qua G and Dentai A 1985 J. Quantum Electron. 21 1743 [2] Dharmarasu N, Yamaguchi M, Khan A, Yamada T, Tanabe T, Takagishi S, Takamoto T, Ohshima T, Itoh H, Imaizumi M and Matsuda S 2001 Appl. Phys. Lett. 79 2399 [3] Emziane M, Nicholas R J, Rogers D C and Dosanjh J 2008 Thin Solid Films 516 6744 [4] Leite M S, Woo R L, Munday J N, Hong W D, Mesropian S, Law D C and Atwater H A 2013 Appl. Phys. Lett. 102 033901 [5] Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits T N D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T and Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277 [6] Ji L, Lu S, Wu Y, Dai P, Bian L, Arimochi M, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S and Yang H 2014 Sol. Energy Mater. Sol. Cells 127 1 [7] Dai P, Lu S, Uchida S, Ji L, Wu Y, Tan M, Bian L and Yang H 2016 Appl. Phys. Express 9 016501 [8] Oshima R, Makita K, Mizuno H, Takato H, Matsubara K and Sugaya T 2015 Jpn. J. Appl. Phys. 54 08KE10 [9] Sugaya T, Nagato Y, Okano Y, Oshima R, Tayagaki T, Makita K and Matsubara K 2017 J. Vac. Sci. Technol. B 35 02B103 [10] Ji L, Tan M, Honda K, Harasawa R, Yasue Y, Wu Y, Dai P, Tackeuchi A, Bian L, Lu S and Yang H 2015 Solar Energy Materials and Solar Cells 137 68 [11] Wu Y, Ji L, Dai P, Tan M, Lu S and Yang H 2016 Jpn. J. Appl. Phys. 55 022301 [12] Yang W, Dai P, Ji L, Tan M, Wu Y, Uchida S, Lu S and Yang H 2016 Appl. Surf. Sci. 389 673 [13] Baillargeon J N, Cho A Y and Cheng K Y 1996 J. Appl. Phys. 79 7652 [14] He W, Lu S L and Dong J R 2010 Appl. Phys. Lett. 97 121909 [15] Hong Y G, Nishikawa A and Tu C W 2003 Appl. Phys. Lett. 83 5446 [16] Mintairov A M, Sun K, Merz J L, Yuen H, Bank S, Wistey M, Harris J S, Peake G, Egorov A, Ustinov V, Kudrawiec R and Misiewicz J 2009 Semicond. Sci. Technol. 24 075013 [17] Grenouillet L, Bru-Chevallier C, Guillot G, Gilet P, Duvaut P, Vannuffel C, Million A and Chenevas-Paule A 2000 Appl. Phys. Lett. 76 2241 [18] Hidouri T, Saidi F, Maaref H, Rodriguez Ph and Auvray L 2016 Opt. Mater. 62 267 [19] Prutskij T and Seredin P 2021 Journal of Luminescence 231 117830 [20] Lin T Y, Fan J C and Chen Y F 1999 Semicond. Sci. Technol. 14 406 [21] Su Z C, Xu S J, Wang R X, Ning J Q, Dong J R, Lu S L and Yang H 2017 Solar Energy Materials and Solar Cells 168 201 [22] Smiri B, Hidouri T, Saidi F and Maaref H 2019 Appl. Phys. A 125 134 [23] Seetoh I P, Soh C B, Fitzgerald E A and Chua S J 2013 Appl. Phys. Lett. 102 101112 [24] Lu W and Fu Y 2014 Optical Spectroscopic Analysis and Calculations of Semiconductors (Beijing: Science Press) p. 94 [25] Anderson P W 1958 Phys. Rev. 109 1492 [26] Lourenço S A, Dias I F L, Duarte J L, Laureto E, Aquino V M and Harmand J C 2007 Braz. J. Phys. 37 1212 [27] Li X, Xu J, Wei T, Yang W, Jin S, Wu Y and Lu S 2021 Crystals 11 1590 [28] Le Ru E C, Fack J and Murray R 2003 Phys. Rev. B 67 245318 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|