Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017802    DOI: 10.1088/1674-1056/ac6b24
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift

Yao-Pu Lang(郎垚璞)1, Qing-Gang Liu(刘庆纲)1,†, Qi Wang(王奇)1, Xing-Lin Zhou(周兴林)2, and Guang-Yi Jia(贾光一)3
1 State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China;
2 School of Communications, Wuhan University of Science and Technology, Wuhan 430081, China;
3 School of Science, Tianjin University of Commerce, Tianjin 300134, China
Abstract  This paper puts forward a novel method of measuring the thin period-structure-film thickness based on the Bloch surface wave (BSW) enhanced Goos-Hänchen (GH) shift in one-dimensional photonic crystal (1DPC). The BSW phenomenon appearing in 1DPC enhances the GH shift generated in the attenuated total internal reflection structure. The GH shift is closely related to the thickness of the film which is composed of layer-structure of 1DPC. The GH shifts under multiple different incident light conditions will be obtained by varying the wavelength and angle of the measured light, and the thickness distribution of the entire structure of 1DPC is calculated by the particle swarm optimization (PSO) algorithm. The relationship between the structure of a 1DPC film composed of TiO2 and SiO2 layers and the GH shift, is investigated. Under the specific photonic crystal structure and incident conditions, a giant GH shift, 5.1×103 times the wavelength of incidence, can be obtained theoretically. Simulation and calculation results show that the thickness of termination layer and periodic structure bilayer of 1DPC film with 0.1-nm resolution can be obtained by measuring the GH shifts. The exact structure of a 1DPC film is innovatively measured by the BSW-enhanced GH shift.
Keywords:  thin film thickness      Bloch surface wave (BSW)      Goos-Hänchen shift      photonic crystal  
Received:  17 February 2022      Revised:  20 April 2022      Accepted manuscript online:  28 April 2022
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  61.05.-a (Techniques for structure determination)  
  68.65.Ac (Multilayers)  
  68.55.jd (Thickness)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51575387 and 51827812).
Corresponding Authors:  Qing-Gang Liu     E-mail:  lqg@tju.edu.cn

Cite this article: 

Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一) Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift 2023 Chin. Phys. B 32 017802

[1] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals-Molding the flow of light (New Jersey: Princeton University Press) pp. 44-45
[2] Gonzalez-Valencia E, Herrera R A and Torres P 2019 Opt. Express 27 8236
[3] Goyal A K and Pal S 2020 Appl. Nanosci. 10 3639
[4] Goyal A K and Saini J 2020 Appl. Nanosci. 10 4307
[5] Khodami M, Hirbodvash Z, Krupin O and Berini P 2020 Plasmonics in Biology and Medicine XVII, p. 112570E
[6] Kumar M and Prasad S 2021 Plasmonics 16 923
[7] Niu D K, Zerrad M, Lereu A, Moreau A, Lumeau J, Zapien J A, Passian A, Aubry V and Amra C 2020 Phys. Rev. Appl. 13 054064
[8] Zhang C, Shen S, Wang Q, Lin M, Ouyang Z and Liu Q 2020 Materials (Basel) 13 1217
[9] Saghirzadeh Darki B and Granpayeh N 2010 Opt. Commun. 283 4099
[10] Zare Z and Gharaati A 2020 Eur. Phys. J. D 74 140
[11] Popkova A A, Chezhegov A A, Soboleva I V, Rybin M G, Obraztsova E D, Bessonov V O and Fedyanin A A 2020 Metanano 1461 012134
[12] Wu S, Liu T, Tang B, Li L and Zhang S 2019 ACS Appl. Mater. Interfaces 11 10171
[13] Bikbaev R G, Vetrov S Y and Timofeev I V 2020 J. Opt. Soc. Am. B 37 2215
[14] Wu F, Wu X, Xiao S, Liu G and Li H 2021 Opt. Express 29 23976
[15] Rodriguez G A, Aurelio D, Liscidini M and Weiss S M 2019 Appl. Phys. Lett. 115 011101
[16] Wang X, Wang H and Yu H 2021 Opt. Commun. 479 126449
[17] Gonzalez-Valencia E, Del Villar I and Torres P 2020 Opt. Lett. 45 2547
[18] Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L and Michelotti F 2012 Sensors and Actuators B: Chemical 174 292
[19] Sreekanth K V, Ouyang Q, Han S, Yong K T and Singh R 2018 Appl. Phys. Lett. 112 161109
[20] Wan Y, Zheng Z, Kong W, Liu Y, Lu Z and Bian Y 2011 Opt. Lett. 36 3539
[21] Yin X and Hesselink L 2006 Appl. Phys. Lett. 89 261108
[22] Guo Y, Singh N M, Das C M, Ouyang Q, Kang L, Li K, Coquet P and Yong K T 2020 Plasmonics 15 1815
[23] Yin X, Hesselink L, Liu Z, Fang N and Zhang X 2004 Appl. Phys. Lett. 85 372
[24] Xu Y, Wu L and Ang L K 2021 IEEE J. Select. Top. Quantum Electron. 27 1
[25] Moskalenko V V, Soboleva I V and Fedyanin A A 2010 JETP Lett. 91 382
[26] Wu F, Wu J, Guo Z, Jiang H, Sun Y, Li Y, Ren J and Chen H 2019 Phys. Rev. Appl. 12 014028
[27] Wan Y, Zheng Z, Kong W, Zhao X, Liu Y, Bian Y and Liu J 2012 Opt. Express 20 8998
[28] Mao M, Zhang T, Li F, Ma Y and Zhang H F 2021 IEEE J. Quantum Electron. 57 6400107
[29] Wild W J and Giles C L 1982 Phys. Rev. A 25 2099
[30] Artmann K 1948 Annalen der Physik 437 87
[31] Waseer W I, Naqvi Q A and Mughal M J 2021 Optik 227 166023
[32] Bezus E A, Bykov D A and Doskolovich L L 2018 Comput. Opt. 42 22
[33] Deng C Z, Ho Y L, Lee Y C, Wang Z, Tai Y H, Zyskowski M, Daiguji H and Delaunay J J 2019 Appl. Phys. Lett. 115 091102
[34] Li S, Wan Y, Liu J, Kong W and Zheng Z 2018 Appl. Sci. 9 40
[35] Mao M, Zhang T, Guo S and Zhang H 2020 J. Opt. Soc. Am. B 37 2095
[36] Zhang T, Mao M-Y, Ma Y, Zhang D and Zhang H-F 2020 Optik 223 165636
[37] Du X and Da H 2021 Opt. Commun. 483 126606
[38] 2014 CompleteEASE Software Manual, Lincoln: J. A. Woollam Corporation, pp. 305, 359
[39] Ferlauto A S, Ferreira G M, Pearce J M, Wronski C R, Collins R W, Deng X and Ganguly G 2002 J. Appl. Phys. 92 2424
[40] Jellison G E and Modine F A 1996 Appl. Phys. Lett. 69 371
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[7] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[12] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[13] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[14] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[15] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
No Suggested Reading articles found!