Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017701    DOI: 10.1088/1674-1056/ac70be
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations

Long Zhou(周龙)1, Xu-Long Zhang(张旭龙)1, Yu-Ying Cao(曹玉莹)1, Fu Zheng(郑富)1, Hua Gao(高华)1, Hong-Fei Liu(刘红飞)1, and Zhi Ma(马治)1,2,†
1 School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China;
2 State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
Abstract  Flexoelectric effect, referring to the strain gradient induced polarization, widely exists in dielectric materials, but its molecular dynamics has not been studied so much so far. In this work, the radial distribution function of BaTiO3 and the phase transition temperatures have been investigated, and the results show that the core-shell potential model is effective and the structure of BaTiO3 is stable in a temperature range of 10 K-150 K. Molecular dynamics simulated hysteresis loops of BaTiO3 show that anisotropy can play an important role in the coercive field. Based on the rational simulation process, the effects of cantilever beam bent angle and fixed length on the polarization are analyzed. It is found that the small bent angle of the curved cantilever beam can give a proportional relationship with a fixed end length and a non-linear relationship is presented when the bent angle is much larger. The prediction of flexoelectric coefficient in BaTiO3 is 18.5 nC/m. This work provides a computational framework for the study of flexoelectric effect by using molecular dynamics.
Keywords:  flexoelectric effect      molecular dynamics      phase transition      hysteresis loop  
Received:  09 February 2022      Revised:  05 April 2022      Accepted manuscript online:  18 May 2022
PACS:  77.65.Ly (Strain-induced piezoelectric fields)  
  02.70.Ns (Molecular dynamics and particle methods)  
  05.70.Fh (Phase transitions: general studies)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Natural Science Funds of Ningxia, China (Grant No. ZR1221) and the National Natural Science Foundation of China (Grant No. 11964027).
Corresponding Authors:  Zhi Ma     E-mail:  mazhi@nxu.edu.cn

Cite this article: 

Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治) Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations 2023 Chin. Phys. B 32 017701

[1] Yan Y, Kim W G, Ma X T, Tegafaw T, Nguyen T M, Lee J M, Choi E J, Ahn H, Ha S H, Kim K, Kim J M, Kim H K, Oh J E, Shin D M and Hwang Y H 2021 Nano Energy 81 105607
[2] Rojas E F, Faroughi S, Abdelkefi A and Park Y H 2021 Appl. Energy 288 116611
[3] Su S, Huang H and Zhu Z H 2021 Energy 224 120056
[4] Coy E 2020 Measurement 163 107986
[5] Ke X Q, Deng Q and Yang S 2021 Ceram Int. 47 4310
[6] Tagantsev A K 1986 Phys. Rev. B 34 5883
[7] Ma W H and Cross L E 2001 Appl. Phys. Lett. 79 4420
[8] Ma W and Cross L E 2006 Appl. Phys. Lett. 88 232902
[9] Ma W H and Cross L E 2002 Appl. Phys. Lett. 81 3440
[10] Maranganti R and Harma P 2009 Phys. Rev. B 80 054109
[11] Hong J W and Vanderbilt D 2013 Phys. Rev. B 88 174107
[12] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S J, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S T 2022 Comput. Phys. Commun. 271 108171
[13] Plimpton S 1995 J. Comput. Phys. 117 1
[14] Mitchell P J, Fincham D 1993 J. Phys.: Condens. Matter 5 1031
[15] Sepliarsky M, Asthagiri A, Phillpot S R, Stachiotti M G and Migoni R L 2005 Curr. Opin. Solid State Mater. 9 107
[16] Boddu V, Endres F and Steinmann P 2017 Sci. Rep. 7 806
[17] Goh W F, Khan S A and Yoon T L 2013 Model Simul. Mater. Sci. 21 045001
[18] Leyva, Ruiz, Anglada-Rivera and Zayas 2012 Revista Cubana de Química 24 266
[19] Karvounis A, Timpu F, Vogler-Neuling V V, Savo R and Grange R 2020 Adv. Opt. Mater. 8 2001249
[20] Gonçalves L G V and Rino J P 2017 Comput. Mater. Sci. 130 98
[21] Tinte S, Stachiotti M G, Phillpot S R, Sepliarsky M, Wolf D and Migoni R L 2004 J. Phys. Condens Mater. 16 3495
[22] Lemanov V V, Smirnova E P, Syrnikov P P and Tarakanov E A 1996 Phys. Rev. B 54 3151
[23] Merz W J 1949 Phys. Rev. 76 1221
[24] Bell A J and Cross L E 1984 Ferroelectrics 59 197
[25] Ma Z, Ma Y N, Chen Z P, Zheng F, Gao H, Liu H F and Chen H M 2018 Ceram. Int. 44 4338
[26] Cross L E 2006 J. Mater. Sci. 41 53
[27] Maranganti R and Sharma P 2009 Phys. Rev. B 80 054109
[28] Pikin S A and Indenbom V L 1978 Ferroelectrics 20 151
[29] Ma W and Cross L E 2005 Appl. Phys. Lett. 86 072905
[30] Ma W H and Cross L E 2001 Appl. Phys. Lett. 78 2920
[31] Xu T, Wang J, Shimada T and Kitamura T 2013 J. Phys.: Condens. Matter 25 415901
[32] Abarca M E 2018 Universitat Politécnica de Catalunya. Masters Thesis
[33] Hong J W, Catalan G, Scott J F and Artacho E 2010 J. Phys. Condens. Matter 22 112201
[34] Gharbi M, Sun Z H, Sharma P, White K and El-Borgi S 2011 Int. J. Solids Struct. 48 249
[35] Hong J W and Vanderbilt D 2013 Phys. Rev. B 88 174107
[36] Narvaez J, Saremi S, Hong J W, Stengel M and Catalan G 2015 Phys. Rev. Lett. 115 037601
[37] Kwon S R, Huang W B, Shu L L, Yuan F G, Maria J P and Jiang X N 2014 Appl. Phys. Lett. 105 142904
[38] Askar A, Lee P C Y and Cakmak A S 1970 Phys. Rev. B 1 3525
[39] Huang S J, Kim T, Hou D, Cann D, Jones J L and Jiang X N 2017 Appl. Phys. Lett. 110 222904
[40] Narvaez J and Catalan G 2014 Appl. Phys. Lett. 104 162903
[41] Ponomareva I, Tagantsev A K and Bellaiche L 2012 Phys. Rev. B 85 104101
[42] Ma W H and Cross L E 2002 Appl. Phys. Lett. 81 3440
[43] Shu L L, Ke S M, Fei L F, Huang W B, Wang Z G, Gong J H, Jiang X N, Wang L, Li F, Lei S J, Rao Z G, Zhou Y B, Zheng R K, Yao X, Wang Y, Stenge M and Catalan G 2020 Nat. Mater. 19 605
[44] Huang S J, Yau H M, Yu H, Qi L, So F, Dai J Y and Jiang X N 2018 AIP Adv. 8 065321
[45] Ma W H and Cross L E 2003 Appl. Phys. Lett. 82 3293
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[12] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[13] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[14] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[15] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
No Suggested Reading articles found!