CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations |
Long Zhou(周龙)1, Xu-Long Zhang(张旭龙)1, Yu-Ying Cao(曹玉莹)1, Fu Zheng(郑富)1, Hua Gao(高华)1, Hong-Fei Liu(刘红飞)1, and Zhi Ma(马治)1,2,† |
1 School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China; 2 State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China |
|
|
Abstract Flexoelectric effect, referring to the strain gradient induced polarization, widely exists in dielectric materials, but its molecular dynamics has not been studied so much so far. In this work, the radial distribution function of BaTiO3 and the phase transition temperatures have been investigated, and the results show that the core-shell potential model is effective and the structure of BaTiO3 is stable in a temperature range of 10 K-150 K. Molecular dynamics simulated hysteresis loops of BaTiO3 show that anisotropy can play an important role in the coercive field. Based on the rational simulation process, the effects of cantilever beam bent angle and fixed length on the polarization are analyzed. It is found that the small bent angle of the curved cantilever beam can give a proportional relationship with a fixed end length and a non-linear relationship is presented when the bent angle is much larger. The prediction of flexoelectric coefficient in BaTiO3 is 18.5 nC/m. This work provides a computational framework for the study of flexoelectric effect by using molecular dynamics.
|
Received: 09 February 2022
Revised: 05 April 2022
Accepted manuscript online: 18 May 2022
|
PACS:
|
77.65.Ly
|
(Strain-induced piezoelectric fields)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Fund: Project supported by the Natural Science Funds of Ningxia, China (Grant No. ZR1221) and the National Natural Science Foundation of China (Grant No. 11964027). |
Corresponding Authors:
Zhi Ma
E-mail: mazhi@nxu.edu.cn
|
Cite this article:
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治) Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations 2023 Chin. Phys. B 32 017701
|
[1] Yan Y, Kim W G, Ma X T, Tegafaw T, Nguyen T M, Lee J M, Choi E J, Ahn H, Ha S H, Kim K, Kim J M, Kim H K, Oh J E, Shin D M and Hwang Y H 2021 Nano Energy 81 105607 [2] Rojas E F, Faroughi S, Abdelkefi A and Park Y H 2021 Appl. Energy 288 116611 [3] Su S, Huang H and Zhu Z H 2021 Energy 224 120056 [4] Coy E 2020 Measurement 163 107986 [5] Ke X Q, Deng Q and Yang S 2021 Ceram Int. 47 4310 [6] Tagantsev A K 1986 Phys. Rev. B 34 5883 [7] Ma W H and Cross L E 2001 Appl. Phys. Lett. 79 4420 [8] Ma W and Cross L E 2006 Appl. Phys. Lett. 88 232902 [9] Ma W H and Cross L E 2002 Appl. Phys. Lett. 81 3440 [10] Maranganti R and Harma P 2009 Phys. Rev. B 80 054109 [11] Hong J W and Vanderbilt D 2013 Phys. Rev. B 88 174107 [12] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S J, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S T 2022 Comput. Phys. Commun. 271 108171 [13] Plimpton S 1995 J. Comput. Phys. 117 1 [14] Mitchell P J, Fincham D 1993 J. Phys.: Condens. Matter 5 1031 [15] Sepliarsky M, Asthagiri A, Phillpot S R, Stachiotti M G and Migoni R L 2005 Curr. Opin. Solid State Mater. 9 107 [16] Boddu V, Endres F and Steinmann P 2017 Sci. Rep. 7 806 [17] Goh W F, Khan S A and Yoon T L 2013 Model Simul. Mater. Sci. 21 045001 [18] Leyva, Ruiz, Anglada-Rivera and Zayas 2012 Revista Cubana de Química 24 266 [19] Karvounis A, Timpu F, Vogler-Neuling V V, Savo R and Grange R 2020 Adv. Opt. Mater. 8 2001249 [20] Gonçalves L G V and Rino J P 2017 Comput. Mater. Sci. 130 98 [21] Tinte S, Stachiotti M G, Phillpot S R, Sepliarsky M, Wolf D and Migoni R L 2004 J. Phys. Condens Mater. 16 3495 [22] Lemanov V V, Smirnova E P, Syrnikov P P and Tarakanov E A 1996 Phys. Rev. B 54 3151 [23] Merz W J 1949 Phys. Rev. 76 1221 [24] Bell A J and Cross L E 1984 Ferroelectrics 59 197 [25] Ma Z, Ma Y N, Chen Z P, Zheng F, Gao H, Liu H F and Chen H M 2018 Ceram. Int. 44 4338 [26] Cross L E 2006 J. Mater. Sci. 41 53 [27] Maranganti R and Sharma P 2009 Phys. Rev. B 80 054109 [28] Pikin S A and Indenbom V L 1978 Ferroelectrics 20 151 [29] Ma W and Cross L E 2005 Appl. Phys. Lett. 86 072905 [30] Ma W H and Cross L E 2001 Appl. Phys. Lett. 78 2920 [31] Xu T, Wang J, Shimada T and Kitamura T 2013 J. Phys.: Condens. Matter 25 415901 [32] Abarca M E 2018 Universitat Politécnica de Catalunya. Masters Thesis [33] Hong J W, Catalan G, Scott J F and Artacho E 2010 J. Phys. Condens. Matter 22 112201 [34] Gharbi M, Sun Z H, Sharma P, White K and El-Borgi S 2011 Int. J. Solids Struct. 48 249 [35] Hong J W and Vanderbilt D 2013 Phys. Rev. B 88 174107 [36] Narvaez J, Saremi S, Hong J W, Stengel M and Catalan G 2015 Phys. Rev. Lett. 115 037601 [37] Kwon S R, Huang W B, Shu L L, Yuan F G, Maria J P and Jiang X N 2014 Appl. Phys. Lett. 105 142904 [38] Askar A, Lee P C Y and Cakmak A S 1970 Phys. Rev. B 1 3525 [39] Huang S J, Kim T, Hou D, Cann D, Jones J L and Jiang X N 2017 Appl. Phys. Lett. 110 222904 [40] Narvaez J and Catalan G 2014 Appl. Phys. Lett. 104 162903 [41] Ponomareva I, Tagantsev A K and Bellaiche L 2012 Phys. Rev. B 85 104101 [42] Ma W H and Cross L E 2002 Appl. Phys. Lett. 81 3440 [43] Shu L L, Ke S M, Fei L F, Huang W B, Wang Z G, Gong J H, Jiang X N, Wang L, Li F, Lei S J, Rao Z G, Zhou Y B, Zheng R K, Yao X, Wang Y, Stenge M and Catalan G 2020 Nat. Mater. 19 605 [44] Huang S J, Yau H M, Yu H, Qi L, So F, Dai J Y and Jiang X N 2018 AIP Adv. 8 065321 [45] Ma W H and Cross L E 2003 Appl. Phys. Lett. 82 3293 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|