CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer |
Shang-Da Qu(屈尚达)1, Ming-Sheng Xu(徐明升)1, Cheng-Xin Wang(王成新)2, Kai-Ju Shi(时凯居)1, Rui Li(李睿)1, Ye-Hui Wei(魏烨辉)1, Xian-Gang Xu(徐现刚)1, and Zi-Wu Ji(冀子武)1,† |
1 School of Microelectronics, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China; 2 Shandong Inspur Huaguang Optoelectronics Co., Ltd., Weifang 261061, China |
|
|
Abstract Temperature-dependent and driving current-dependent electroluminescence spectra of two different InGaN/GaN multiple quantum well structures SA and SB are investigated, with the In composition in each well layer (WL) along the growth direction progressively increasing for SA and progressively decreasing for SB. The results show that SB exhibits an improved efficiency droop compared with SA. This phenomenon can be explained as follows: owing to the difference in growth pattern of the WL between these two samples, the terminal region of the WL in SB contains fewer In atoms than in SA, and therefore the former undergoes less In volatilization than the latter during the waiting period required for warming-up due to the difference in the growth temperature between well and barrier layers. This results in SB having a deeper triangular-shaped potential well in its WL than SA, which strongly confines the carriers to the initial region of the WL to prevent them from leaking to the p-GaN side, thus improving the efficiency droop. Moreover, the improvement in the efficiency droop for SB is also partly attributed to its stronger Coulomb screening effect and carrier localization effect.
|
Received: 08 April 2021
Revised: 21 May 2021
Accepted manuscript online: 04 June 2021
|
PACS:
|
78.66.Fd
|
(III-V semiconductors)
|
|
78.67.De
|
(Quantum wells)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872167 and 51672163) and the Major Science and Technology Innovation Project of Shandong Province, China (Grant No. 2019JZZY010210). |
Corresponding Authors:
Zi-Wu Ji
E-mail: jiziwu@sdu.edu.cn
|
Cite this article:
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武) Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer 2022 Chin. Phys. B 31 017801
|
[1] Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nat. Photon. 3 180 [2] Yulianto N, Kadja G T M, Bornemann S, Gahlawat S, Majid N, Triyana K, Abdi F F, Wasisto H S and Waag A 2021 ACS Appl. Electron. Mater. 3 778 [3] Guo X, Liu Q L, Li C, Liu B, Dong J and Shen G D 2015 Chin. Phys. B 24 068505 [4] Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X X and Mino H 2012 Opt. Express 20 3932 [5] Zhang D Y, Zhang J, Liu X F, Chen S S, Li H W, Liu M Q, Ye D Q and Wang D X 2019 Chin. Phys. B 28 048501 [6] Dai Q, Shan Q F, Wang J, Chhajed S, Cho J, Schubert E F, Crawford M H, Koleske D D, Kim M and Park Y 2010 Appl. Phys. Lett. 97 133507 [7] Schubert M F, Chhajed S, Kim J K, Schubert E F, Koleske D D, Crawford M H, Lee S R, Fischer A J, Thaler G and Banas M A 2007 Appl. Phys. Lett. 91 231114 [8] Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103 [9] Yi Y, Cao X A and Yan C 2008 IEEE T. Electron Dev. 55 1771 [10] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507 [11] David A, Young N G, Hurni C A and Craven M D 2019 Phys. Rev. Appl. 11 031001 [12] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101 [13] Schubert M F, Xu J R, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102 [14] Wang C H, Ke C C, Lee C Y, Chang S P, Chang W T, Li J C, Li Z Y, Yang H C, Kuo H C, Lu T C and Wang S C 2010 Appl. Phys. Lett. 97 261103 [15] Zheng Z Y, Chen Z M, Chen Y D, Wu H L, Huang S J, Fan B F, Wu Z S, Wang G and Jiang H 2013 Appl. Phys. Lett. 102 241108 [16] Wang C H, Chang S P, Ku P H, Li J C, Lan Y P, Lin C C, Yang H C, Kuo H C, Lu T C, Wang S C and Chang C Y 2011 Appl. Phys. Lett. 99 171106 [17] Lee Y J, Chen C H and Lee C J 2010 IEEE Photon. Tech. Lett. 22 1506 [18] Zhu L H, Zheng Q H and Liu B L 2009 Semicond. Sci. Technol. 24 125003 [19] Wang L, Li R, Yang Z W, Li D, Yu T, Liu N Y, Liu L, Chen W H and Hu X D 2009 Appl. Phys. Lett. 95 211104 [20] Li P P, Bonef B, Khoury M, Lheureux G, Li H J, Kang J J, Nakamura S and DenBaars S P 2018 Superlattice Microstruct. 113 684 [21] Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C and Hao Y 2012 Chin. Phys. B 21 077103 [22] Zhao G J, Wang L S, Li H J, Meng Y L, Li F Z, Yang S Y and Wang Z G 2018 Appl. Phys. Lett. 112 052105 [23] Yong A M, Soh C B, Zhang X H, Chow S Y and Chua S J 2007 Thin Solid Films 515 4496 [24] Vickers M E, Kappers M J, Smeeton T M, Thrush E J, Barnard J S and Humphreys C J 2003 J. Appl. Phys. 94 1565 [25] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502 [26] Pendlebury S T, Parbrook P J, Mowbray D J, Wooda D A and Lee K B 2007 J. Cryst. Growth 307 363 [27] Ting S M, Ramer J C, Florescu D I, Merai V N, Albert B E, Parekh A, Lee D S, Lu D, Christini D V, Liu L and Armour E A 2003 J. Appl. Phys. 94 1461 [28] Liu W, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Li X, Shi M, Zhao D M, Liu J P, Zhang S M, Wang H and Yang H 2015 J. Vac. Sci. Technol. 33 061502 [29] Nippert F, Karpov S Y, Callsen G, Galler B, Kure T, Nenstiel C, Wagner M R, Straßburg M, Lugauer H J and Hoffmann A 2016 Appl. Phys. Lett. 109 161103 [30] Eliseev P G, Perlin P, Lee J and Osiński M 1997 Appl. Phys. Lett. 71 569 [31] Eliseev P G 2003 J. Appl. Phys. 93 5404 [32] Li C F, Shi K J, Xu M S, Xu X G and Ji Z W 2019 Chin. Phys. B 28 107803 [33] Hao M, Zhang J, Zhang X H and Chua S 2002 Appl. Phys. Lett. 81 5129 [34] Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B and Xu X G 2017 Opt. Express 25 A871 [35] Lee Y J, Chiu C H, Ke C C, Lin P C, Lu T C, Kuo H C and Wang S C 2009 IEEE J. Sel. Top. Quant. 15 1137 [36] Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B and Lee J K 2013 Appl. Surf. Sci. 283 727 [37] Shin D S, Han D P, Oh J Y and Shim J I 2012 Appl. Phys. Lett. 100 153506 [38] Wang H N, Ji Z W, Xiao H D, Wang M Q, Qu S, Shen Y and Xu X G 2014 Physica E 59 56 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|