Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 094204    DOI: 10.1088/1674-1056/abe930
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers

Yi Zhang(张一)1,2, Cheng-Ao Yang(杨成奥)1,2, Jin-Ming Shang(尚金铭)1,2, Yi-Hang Chen(陈益航)1,2, Tian-Fang Wang(王天放)1,2, Yu Zhang(张宇)1,2, Ying-Qiang Xu(徐应强)1,2, Bing Liu(刘冰)3, and Zhi-Chuan Niu(牛智川)1,2,3,†
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength. The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector. The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper. And the quantum well cascade laser with 100-μm-wide, 2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature. The characteristic temperature T0 is estimated at above 60 K.
Keywords:  antimony      quantum well cascade      diode laser      molecular beam epitaxy  
Received:  18 November 2020      Revised:  17 February 2021      Accepted manuscript online:  24 February 2021
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.50.-p (Quantum optics)  
  78.55.Cr (III-V semiconductors)  
  78.67.De (Quantum wells)  
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61790581) and the Key Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303020001).
Corresponding Authors:  Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川) GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers 2021 Chin. Phys. B 30 094204

[1] Forouhar S, Briggs R M, Frez C, Franz K J and Ksendzov A 2012 Appl. Phys. Lett. 100 031107
[2] Rothman L S, Gordon I E, Babikov Y, Barbe A and Wagner G 2013 J. Quantum Spec. Radi. Transfer 130 4
[3] Pfahler C, Kaufel G, Kelemen M T, Mikulla M, Rattunde M, Schmitz J and Wagner J 2006 IEEE Photon. Technol. Lett. 18 758
[4] Kim J G, Shterengas L, Martinelli R U, Belenky G L and Chan W K 2002 Appl. Phys. Lett. 81 3146
[5] Shterengas L, Belenky G, kipshidze G and Hosoda T 2008 Appl. Phys. Lett. 92 171111
[6] Chen J, Kipshidze G and Shterengas L 2010 IEEE J. Quantum Electron 46 1464
[7] Xie S W, Yang C A, Huang S S, Yuan Y and Niu Z C 2019 Super. Micro. 130 339
[8] Hosoda T, Feng T, Shterengas L, Kipshidze G and Belenky G 2016 Appl. Phys. Lett. 108 131109
[9] Shterengas L, Liang R, Kipshidze G, Hosoda T, Belenky G, Bowman S S and Tober R L 2014 Appl. Phys. Lett. 105 161112
[10] Canedy C L, Abell J, Merritt C D, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2014 Opt. Express 22 7702
[11] Zhang Y, Shao F H, Yang C A, Xie S W, Huang S S, Yuan Y, Shang J M, Zhang Y, Xu Y Q and Niu Z C 2018 Chin. Phys. B 27 124207
[12] Canedy C L, Warren M V, Merritt C D, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2017 Proc. SPIE 10111 10111
[13] Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R and Meyer J R 2011 Nat. Commun. 2 585
[14] Yang R Q and Pei S S 1996 J. Appl. Phys. 79 8197
[15] Vurgaftman I, Bewley W W, Canedy C L, Kim C, Kim M, Lindle J J, Merritt C D, Abell J and Meyer J R 2011 IEEE J. Sel. Top. Quantum Electron. 17 1435
[16] Shterengas L, Liang R, Kipshidze G, Hosoda T, Suchalkin S and Belenky G 2013 Appl. Phys. Lett. 103 121108
[17] Shterengas L, Liang R, Kipshidze G and Belenky G 2014 Proc. SPIE 9002 900213
[18] Shterengas L, Kipshidze G, Hosoda T, Liang R, Feng T, Wang M, Aaron S and Belenky G 2017 IEEE J. Select. Top. Quantum Electron. 23 1500708
[19] Ermolaev M, Lin Y X, Shterengas L, Hosoda T and Belenky G 2018 IEEE Photon. Technol. Lett. 30 869
[20] Xie S W, Zhang Y, Yang C A, Huang S S, Yuan Y, Zhang Y, Shang J M, Shao F H, Xu Y Q and Niu Z C 2019 Chin. Phys. B 28 014208
[21] Liang R, Chen J, Kipshidze G, Westerfeld D, Shterengas L and Belenky G 2011 IEEE Photon. Technol. Lett. 23 603
[22] Mahalingam K, Haugan H J, Brown G J and Aronow A J 2013 Appl. Phys. Lett. 103 211605
[23] Maddox S J, March S D and Bank S R 2016 Cryst. Growth Des. 16 3582
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
[7] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[8] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[9] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[10] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[11] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[12] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[13] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[14] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[15] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
No Suggested Reading articles found!