GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一)1,2, Cheng-Ao Yang(杨成奥)1,2, Jin-Ming Shang(尚金铭)1,2, Yi-Hang Chen(陈益航)1,2, Tian-Fang Wang(王天放)1,2, Yu Zhang(张宇)1,2, Ying-Qiang Xu(徐应强)1,2, Bing Liu(刘冰)3, and Zhi-Chuan Niu(牛智川)1,2,3,†
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength. The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector. The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper. And the quantum well cascade laser with 100-μm-wide, 2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature. The characteristic temperature T0 is estimated at above 60 K.
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61790581) and the Key Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303020001).
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川) GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers 2021 Chin. Phys. B 30 094204
[1] Forouhar S, Briggs R M, Frez C, Franz K J and Ksendzov A 2012 Appl. Phys. Lett.100 031107 [2] Rothman L S, Gordon I E, Babikov Y, Barbe A and Wagner G 2013 J. Quantum Spec. Radi. Transfer130 4 [3] Pfahler C, Kaufel G, Kelemen M T, Mikulla M, Rattunde M, Schmitz J and Wagner J 2006 IEEE Photon. Technol. Lett.18 758 [4] Kim J G, Shterengas L, Martinelli R U, Belenky G L and Chan W K 2002 Appl. Phys. Lett.81 3146 [5] Shterengas L, Belenky G, kipshidze G and Hosoda T 2008 Appl. Phys. Lett.92 171111 [6] Chen J, Kipshidze G and Shterengas L 2010 IEEE J. Quantum Electron46 1464 [7] Xie S W, Yang C A, Huang S S, Yuan Y and Niu Z C 2019 Super. Micro.130 339 [8] Hosoda T, Feng T, Shterengas L, Kipshidze G and Belenky G 2016 Appl. Phys. Lett.108 131109 [9] Shterengas L, Liang R, Kipshidze G, Hosoda T, Belenky G, Bowman S S and Tober R L 2014 Appl. Phys. Lett.105 161112 [10] Canedy C L, Abell J, Merritt C D, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2014 Opt. Express22 7702 [11] Zhang Y, Shao F H, Yang C A, Xie S W, Huang S S, Yuan Y, Shang J M, Zhang Y, Xu Y Q and Niu Z C 2018 Chin. Phys. B27 124207 [12] Canedy C L, Warren M V, Merritt C D, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2017 Proc. SPIE10111 10111 [13] Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R and Meyer J R 2011 Nat. Commun.2 585 [14] Yang R Q and Pei S S 1996 J. Appl. Phys.79 8197 [15] Vurgaftman I, Bewley W W, Canedy C L, Kim C, Kim M, Lindle J J, Merritt C D, Abell J and Meyer J R 2011 IEEE J. Sel. Top. Quantum Electron.17 1435 [16] Shterengas L, Liang R, Kipshidze G, Hosoda T, Suchalkin S and Belenky G 2013 Appl. Phys. Lett.103 121108 [17] Shterengas L, Liang R, Kipshidze G and Belenky G 2014 Proc. SPIE9002 900213 [18] Shterengas L, Kipshidze G, Hosoda T, Liang R, Feng T, Wang M, Aaron S and Belenky G 2017 IEEE J. Select. Top. Quantum Electron.23 1500708 [19] Ermolaev M, Lin Y X, Shterengas L, Hosoda T and Belenky G 2018 IEEE Photon. Technol. Lett.30 869 [20] Xie S W, Zhang Y, Yang C A, Huang S S, Yuan Y, Zhang Y, Shang J M, Shao F H, Xu Y Q and Niu Z C 2019 Chin. Phys. B28 014208 [21] Liang R, Chen J, Kipshidze G, Westerfeld D, Shterengas L and Belenky G 2011 IEEE Photon. Technol. Lett.23 603 [22] Mahalingam K, Haugan H J, Brown G J and Aronow A J 2013 Appl. Phys. Lett.103 211605 [23] Maddox S J, March S D and Bank S R 2016 Cryst. Growth Des.16 3582
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.