Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬)1, Feng-Yuan Lin(林逢源)1,†, Ke-Xue Li(李科学)1, Ji-Long Tang(唐吉龙)1,‡, Xiao-Bing Hou(侯效兵)1, Deng-Kui Wang(王登魁)1, Xuan Fang(方铉)1, Dan Fang(房丹)1, Xin-Wei Wang(王新伟)2, and Zhi-Peng Wei(魏志鹏)1
1 State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China; 2 School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
Abstract The self-catalyzed growth of GaAs nanowires (NWs) on silicon (Si) is an effective way to achieve integration between group Ⅲ-V elements and Si. High-crystallinity uniform GaAs NW arrays were grown by solid-source molecular beam epitaxy (MBE). In this paper, we describe systematic experiments which indicate that the substrate treatment is crucial to the highly crystalline and uniform growth of one-dimensional nanomaterials. The influence of natural oxidation time on the crystallinity and uniformity of GaAs NW arrays was investigated and is discussed in detail. The GaAs NW crystallinity and uniformity are maximized after 20 days of natural oxidation time. This work provides a new solution for producing high-crystallinity uniform Ⅲ-V nanowire arrays on wafer-scale Si substrates. The highly crystalline uniform NW arrays are expected to be useful for NW-based optical interconnects and Si platform optoelectronic devices.
(Molecular, atomic, ion, and chemical beam epitaxy)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674021, 11674038, 61704011, 61904017, 11804335, and 12074045), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), the Project of Education Department of Jilin Province, China (Grant No. JJKH20200763KJ), and the Youth Foundation of Changchun University of Science and Technology (Grant No. XQNJJ-2018-18).
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏) Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy 2021 Chin. Phys. B 30 078102
[1] Tomioka K, Yoshimura M and Fukui T 2012 Nature488 189 [2] Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H and Jagadish C 2013 Nat. Photon.7 963 [3] Li H L, Chen Y T, Wei Z P and Chen R 2020 Sci. China Mater.63 1364 [4] Zhu X T, Lin F Y, Zhang Z H, Chen X, Huang H, Wang D K, Tang J L, Fang X, Fang D, Ho J C, Liao L and Wei Z P 2020 Nano Lett.20 2654 [5] Dimakis E, Jahn U, Ramsteiner M, Tahraoui A, Grandal J, Kong X, Marquardt O, Trampert A, Riechert H and Geelhaar L 2014 Nano Lett.14 2604 [6] Holm J V, Jorgensen H I, Krogstrup P, Nygard J, Liu H Y and Aagesen M 2013 Nat. Commun.4 1498 [7] Thelander C, Nilsson H A, Jensen L E and Samuelson L 2005 Nano Lett.5 635 [8] Wang Y, Zhang Y, Zhang D, He S and Li X 2015 Nanoscale Res. Lett.10 269 [9] Liang D, Kang Y S, Huo Y J, Chen Y S, Cui Y and Harris J S 2013 Nano Lett.13 4850 [10] Chen G, Liang B, Liu Z, Yu G, Xie X M, Luo T, Xie Z, Chen D, Zhu M Q and Shen G Z 2014 J. Mater. Chem. C2 1270 [11] Tomioka K, Motohisa J, Hara S, Hiruma K and Fukui T 2010 Nano Lett.10 1639 [12] Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E and Patolsky F 2010 Angew. Chem. Int. Ed.49 6830 [13] Rostgaard K R, Frederiksen R S, Liu Y C, Berthing T, Madsen M H, Holm J, Nygard J and Martinez K L 2013 Nanoscale5 10226 [14] Hu L and Chen G 2007 Nano Lett.7 3249 [15] Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater.9 239 [16] Zhang T, Wu S, Zheng R and Cheng G 2015 Nano Energy13 433 [17] Yu X Z, Li L X, Wang H L, Xiao J X, Shen C, Pan D and Zhao J H 2016 Nanoscale8 10615 [18] Matteini F, Tütüncüoglu G, Potts H, Jabeen F and Fontcuberta i Morral A 2015 Cryst. Growth Des.15 3105 [19] Cohin Y, Mauguin O, Largeau L, Patriarche G, Glas F, Sondergard E and Harmand J C 2013 Nano Lett.13 2743 [20] Dick K A, Deppert K, Martensson T, Mandl B, Samuelson L and Seifert W 2005 Nano Lett.5 761 [21] Fu Y Q, Colli A, Fasoli A, Luo J K, Flewitt A J, Ferrari A C, Milne W I 2009 J. Vac. Sci. Technol. B27 1520 [22] Dubrovskii V G, Xu T, Álvarez A D, Plissard S R, Caroff P, Glas F and Grandidier B 2015 Nano Lett.15 5580 [23] Munshi A M, Dheeraj D, Fauske V T, Kim D C, Huh J, Reinertsen J F, Ahtapodov L, Lee K D, Heidari B, van Helvoort A T J, Fimland B and Weman H 2014 Nano Lett.14 960 [24] Fuhrmann B, Leipner H S, Höche H R, Schubert L, Werner P and Gösele U 2005 Nano Lett.5 2524 [25] Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gosele U and Zacharias M 2007 Small3 76 [26] Kang Y B, Tang J L, Wang P H, Lin F Y, Fang X, Fang D, Wang D K, Wang X H and Wei Z P 2018 Mater. Res. Express6 035012
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.