Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017803    DOI: 10.1088/1674-1056/ac248f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers

Xiao-Bo He(何小波)1,2, Hua-Tian Hu(胡华天)3, Ji-Bo Tang(唐继博)3, Guo-Zhen Zhang(张国桢)1, Xue Chen(陈雪)1, Jun-Jun Shi(石俊俊)2, Zhen-Wei Ou(欧振伟)1, Zhi-Feng Shi(史志锋)4, Shun-Ping Zhang(张顺平)1,†, Chang Liu(刘昌)1,‡, and Hong-Xing Xu(徐红星)1,3,§
1 School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China;
2 Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
3 The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;
4 Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  Light emission by inelastic tunneling (LEIT) from a metal-insulator-metal tunnel junction is an ultrafast emission process. It is a promising platform for ultrafast transduction from electrical signal to optical signal on integrated circuits. However, existing procedures of fabricating LEIT devices usually involve both top-down and bottom-up techniques, which reduces its compatibility with the modern microfabrication streamline and limits its potential applications in industrial scale-up. Here in this work, we lift these restrictions by using a multilayer insulator grown by atomic layer deposition as the tunnel barrier. For the first time, we fabricate an LEIT device fully by microfabrication techniques and show a stable performance under ambient conditions. Uniform electroluminescence is observed over the entire active region, with the emission spectrum shaped by metallic grating plasmons. The introduction of a multilayer insulator into the LEIT can provide an additional degree of freedom for engineering the energy band landscape of the tunnel barrier. The presented scheme of preparing a stable ultrathin tunnel barrier may also find some applications in a wide range of integrated optoelectronic devices.
Keywords:  electroluminescence      plasmonics      inelastic electron tunneling      multilayer insulator      atomic layer deposition  
Received:  24 March 2021      Revised:  16 June 2021      Accepted manuscript online:  08 September 2021
PACS:  78.60.Fi (Electroluminescence)  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004222 and 91850207), the National Key Research and Development Program of China (Grant Nos. 2017YFA0303504 and 2017YFA0205800), the Fundamental Research Funds for the Central Universities, China, the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Postdoctoral Science Foundation of China (Grant No. 2020M682223).
Corresponding Authors:  Shun-Ping Zhang, Chang Liu, Hong-Xing Xu     E-mail:  spzhang@whu.edu.cn;chang.liu@whu.edu.cn;hxxu@whu.edu.cn

Cite this article: 

Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星) Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers 2022 Chin. Phys. B 31 017803

[1] Parzefall M and Novotny L 2019 Rep. Prog. Phys. 82 112401
[2] Liu L F, Xu Y, Zhu J J, Wang P, Tong L M and Krasavin A V 2020 Frontiers in Physics 8 251
[3] Dathe A, Ziegler M, Hübner U, Fritzsche W and Stranik O 2016 Nano Lett. 16 5728
[4] Wang P, Nasir M E, Krasavin A V, Dickson W and Zayats A V 2020 Nano Lett. 20 1536
[5] Kullock R, Ochs M, Grimm P, Emmerling M and Hecht B 2020 Nat. Commun. 11 115
[6] Du W, Wang T, Chu H-S and Nijhuis C A 2017 Nat. Photon. 11 623
[7] Lambe J and McCarthy S L 1976 Phys. Rev. Lett. 37 923
[8] Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O and Dudovich N 2012 Nature 485 343
[9] Zhang Y, Chen W, Fu T, Sun J, Zhang D, Li Y, Zhang S and Xu H 2019 Nano Lett. 19 6284
[10] Chen C, Bobisch C and Ho W 2009 Science 325 981
[11] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L and Hou J G 2009 Nat. Photon. 4 50
[12] Bharadwaj P, Bouhelier A and Novotny L 2011 Phys. Rev. Lett. 106 226802
[13] Krane N, Lotze C, Läger J M, Reecht G and Franke K J 2016 Nano Lett. 16 5163
[14] Parzefall M, Bharadwaj P, Jain A, Taniguchi T, Watanabe K and Novotny L 2015 Nat. Nanotechnol. 10 1058
[15] Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M and Hecht B 2015 Nat. Photon. 9 582
[16] Namgung S, Mohr D A, Yoo D, Bharadwaj P, Koester S J and Oh S H 2018 ACS Nano 12 2780
[17] Qian H L, Hsu S W, Gurunatha K, Riley C T, Zhao J, Lu D, Tao A R and Liu Z W 2018 Nat. Photon. 12 485
[18] Gurunarayanan S P, Verellen N, Zharinov V S, James Shirley F, Moshchalkov V V, Heyns M, Van de Vondel J, Radu I P and Van Dorpe P 2017 Nano Lett. 17 7433
[19] Vardi Y, Cohen-Hoshen E, Shalem G and Bar-Joseph I 2016 Nano Lett. 16 748
[20] He X, Tang J, Hu H, Shi J, Guan Z, Zhang S and Xu H 2019 ACS Photon. 6 823
[21] Qin J, Liu Y, Luo H, Jiang Z, Cai W and Wang L 2019 ACS Photon. 6 2392
[22] Zhang C, Hugonin J P, Coutrot A L, Sauvan C, Marquier F and Greffet J J 2019 Nat. Commun. 10 4949
[23] Parzefall M, Szabo A, Taniguchi T, Watanabe K, Luisier M and Novotny L 2019 Nat. Commun. 10 292
[24] He X, Tang J, Hu H, Shi J, Guan Z, Zhang S and Xu H 2019 ACS Nano 13 14041
[25] Zhang G, Guo T, He X, Ai Z, Wu H and Liu C 2018 Adv. Electron. Mater. 4 1800195
[26] Cho T H, Farjam N, Allemang C R, Pannier C P, Kazyak E, Huber C, Rose M, Trejo O, Peterson R L, Barton K and Dasgupta N P 2020 ACS Nano 14 17262
[27] Li D, Cheng R, Zhou H, Wang C, Yin A, Chen Y, Weiss N O, Huang Y and Duan X 2015 Nat. Commun. 6 7509
[28] Chae H U, Ahsan R, Lin Q, Sarkar D, Rezaeifar F, Cronin S B and Kapadia R 2019 Nano Lett. 19 6227
[29] George S M 2010 Chem. Rev. 110 111
[30] Cowell E W, 3rd, Alimardani N, Knutson C C, Conley J F Jr, Keszler D A, Gibbons B J and Wager J F 2011 Adv. Mater. 23 74
[31] Periasamy P, Guthrey H L, Abdulagatov A I, Ndione P F, Berry J J, Ginley D S, George S M, Parilla P A and O'Hayre R P 2013 Adv. Mater. 25 1301
[32] Kirtley J, Theis T N and Tsang J C 1981 Phys. Rev. B 24 5650
[33] Sze S M and Ng K K 2006 Physics of semiconductor devices (John Wiley & Sons)
[34] Grover S and Moddel G 2012 Solid-State Electronics 67 94
[35] Aydinoglu F, Alhazmi M, Cui B, Ramahi O, Irannejad M and Yavuz M 2014
[36] Tien T C, Pan F M, Wang L P, Lee C H, Tung Y L, Tsai S Y, Lin C, Tsai F Y and Chen S J 2009 Nanotechnology 20 305201
[37] Parzefall M and Novotny L 2018 ACS Photon. 5 4195
[38] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[39] Uskov A V, Khurgin J B, Protsenko I E, Smetanin I V and Bouhelier A 2016 Nanoscale 8 14573
[40] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[4] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[5] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[6] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[7] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
[8] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[9] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[10] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[11] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[12] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[13] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[14] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁)†, Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), and Zhipeng Wei(魏志鹏)‡. Chin. Phys. B, 2020, 29(10): 107102.
[15] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
No Suggested Reading articles found!