Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127303    DOI: 10.1088/1674-1056/ac89d5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene

Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文)
School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China
Abstract  Quantum anomalous Hall effect (QAHE) is an innovative topological spintronic phenomenon with dissipationless chiral edge states and attracts rapidly increasing attention. However, it has only been observed in few materials in experiments. Here, according to the first-principles calculations, we report that the MXene MoYN$_{2}$CSCl shows a topologically nontrivial band gap of 37.3~meV, possessing QAHE with a Chern number of $C = 1$, which is induced by band inversion between $ {\rm d}_{xz}$ and ${\rm d}_{yz}$ orbitals. Also, the topological phase transition for the MoYN$_{2}$CSCl can be realized via strain or by turning the magnetization direction. Remarkably, MoYN$_{2}$CSCl shows the nodal-line semimetal state dependent on the electron correlation $U$. Our findings add an experimentally accessible and tunable member to the QAHE family, which stands a chance of enriching the applications in spintronics.
Keywords:  MoYN2CSCl MXene      quantum anomalous Hall effect      topological phase      first-principles calculations  
Received:  11 June 2022      Revised:  13 August 2022      Accepted manuscript online:  16 August 2022
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.43.-f (Quantum Hall effects)  
  73.43.Nq (Quantum phase transitions)  
Fund: Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), Shandong Provincial Natural Science Foundation (Grant No. ZR2020QA052), and National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200).
Corresponding Authors:  Changwen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文) Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene 2022 Chin. Phys. B 31 127303

[1] Hwang E H, Rossi E and Sarma S D 2009 Phys. Rev. B 80 235415
[2] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[3] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248
[4] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
[5] Feng X, He Z, Peng R, Dai Y, Huang B and Ma Y 2022 Phys. Rev. Mater. 6 044001
[6] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 ACS Nano 6 1322
[7] Si C, Jin K H, Zhou J, Sun Z and Liu F 2016 Nano Lett. 16 6584
[8] Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y and Barsoum M W 2015 ACS Nano 9 9507
[9] Si C, Zhou J and Sun Z 2015 ACS Appl. Mater. Inter. 7 17510
[10] Barik R K and Singh A K 2021 Chem. Mater. 33 6311
[11] Khazaei M, Ranjbar A, Arai M, Sasaki T and Yunoki S 2017 J. Mater. Chem. C 5 2488
[12] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[13] Zhang S B, Zhang Y Y and Shen S Q 2014 Phys. Rev. B 90 115305
[14] Huang C, Zhou J, Wu H, Deng K, Jena P and Kan E 2017 Phys. Rev. B 95 045113
[15] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[16] Gao R, Qin G, Qi S, Qiao Z and Ren W 2021 Phys. Rev. Mater. 5 114201
[17] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[18] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[19] Qi S, Qiao Z, Deng X, Cubuk E D, Chen H, Zhu W, Kaxiras E, Zhang S B, Xu X and Zhang Z 2016 Phys. Rev. Lett. 117 056804
[20] Zhang H, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
[21] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Inter. 9 41443
[22] Jiang H, Qiao Z, Liu H and Niu Q 2012 Phys. Rev. B 85 45445
[23] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[24] He K, Wang Y and Xue Q K 2014 Natl. Sci. Rev. 1 38
[25] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 66501
[26] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226
[27] Luo W and Qi X L 2013 Phys. Rev. B 87 085431
[28] Li P, Yu J, Wang Y and Luo W 2021 Phys. Rev. B 103 155118
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Mortensen J J, Hansen L B and Jacobsen K W 2005 Phys. Rev. B 71 035109
[31] Shi J M, Peeters F M, Hai G Q and Devreese J T 1992 Phys. Rev. B 44 5692
[32] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[33] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851
[34] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304
[35] Cadelano E, Palla P L, Giordano S and Colombo L 2010 Phys. Rev. B 82 235414
[36] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[37] Guo S D, Zhu J X, Mu W Q and Liu B G 2021 Phys. Rev. B 104 224428
[38] Cadelano E and Colombo L 2012 Phys. Rev. B 85 245434
[39] Guo G C, Wang R Z, Ming B M, Wang C, Luo S W, Zhang M and Yan H 2019 J. Mater. Chem. A 7 2106
[40] Chitara B and Ya'akobovitz A 2018 Nanoscale 10 13022
[41] Goodenough J B 1955 Phys. Rev. 100 564
[42] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[43] Heitler W and London F 1927 Z. Phys. 44 455
[44] Bonchev D 1981 Int. J. Quantum Chem. 19 673
[45] Šmejkal L, Mokrousov Y, Yan B and MacDonald A H 2018 Nat. Phys. 14 242
[46] Rohringer G, Valli A and Toschi A 2012 Phys. Rev. B 86 125114
[47] Mori H, Tanaka S and Mori T 1998 Phys. Rev. B 57 12023
[48] Fanfarillo L and Bascones E 2015 Phys. Rev. B 92 075136
[49] Jin Y J, Wang R, Zhao J Z, Du Y P, C. Di Zheng, Gan L Y, Liu J F, Xu H and Tong S Y 2017 Nanoscale 9 13112
[50] Liu Z, Zhao G, Liu B, Wang Z F, Yang J and Liu F 2018 Phys. Rev. Lett. 121 246401
[51] Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G, Bansil A, Jeng H T, Lin H and Hasan M Z 2016 Phys. Rev. B 93 121113
[52] Xu Q, Yu R, Fang Z, Dai X and Weng H 2017 Phys. Rev. B 95 045136
[53] Shao D F, Gurung G, Zhang S H and Tsymbal E Y 2019 Phys. Rev. Lett. 122 77203
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[7] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!