CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene |
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文)† |
School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China |
|
|
Abstract Quantum anomalous Hall effect (QAHE) is an innovative topological spintronic phenomenon with dissipationless chiral edge states and attracts rapidly increasing attention. However, it has only been observed in few materials in experiments. Here, according to the first-principles calculations, we report that the MXene MoYN$_{2}$CSCl shows a topologically nontrivial band gap of 37.3~meV, possessing QAHE with a Chern number of $C = 1$, which is induced by band inversion between $ {\rm d}_{xz}$ and ${\rm d}_{yz}$ orbitals. Also, the topological phase transition for the MoYN$_{2}$CSCl can be realized via strain or by turning the magnetization direction. Remarkably, MoYN$_{2}$CSCl shows the nodal-line semimetal state dependent on the electron correlation $U$. Our findings add an experimentally accessible and tunable member to the QAHE family, which stands a chance of enriching the applications in spintronics.
|
Received: 11 June 2022
Revised: 13 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
Fund: Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), Shandong Provincial Natural Science Foundation (Grant No. ZR2020QA052), and National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200). |
Corresponding Authors:
Changwen Zhang
E-mail: ss_zhangchw@ujn.edu.cn
|
Cite this article:
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文) Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene 2022 Chin. Phys. B 31 127303
|
[1] Hwang E H, Rossi E and Sarma S D 2009 Phys. Rev. B 80 235415 [2] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [3] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248 [4] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992 [5] Feng X, He Z, Peng R, Dai Y, Huang B and Ma Y 2022 Phys. Rev. Mater. 6 044001 [6] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 ACS Nano 6 1322 [7] Si C, Jin K H, Zhou J, Sun Z and Liu F 2016 Nano Lett. 16 6584 [8] Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y and Barsoum M W 2015 ACS Nano 9 9507 [9] Si C, Zhou J and Sun Z 2015 ACS Appl. Mater. Inter. 7 17510 [10] Barik R K and Singh A K 2021 Chem. Mater. 33 6311 [11] Khazaei M, Ranjbar A, Arai M, Sasaki T and Yunoki S 2017 J. Mater. Chem. C 5 2488 [12] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [13] Zhang S B, Zhang Y Y and Shen S Q 2014 Phys. Rev. B 90 115305 [14] Huang C, Zhou J, Wu H, Deng K, Jena P and Kan E 2017 Phys. Rev. B 95 045113 [15] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [16] Gao R, Qin G, Qi S, Qiao Z and Ren W 2021 Phys. Rev. Mater. 5 114201 [17] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 [18] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101 [19] Qi S, Qiao Z, Deng X, Cubuk E D, Chen H, Zhu W, Kaxiras E, Zhang S B, Xu X and Zhang Z 2016 Phys. Rev. Lett. 117 056804 [20] Zhang H, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802 [21] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Inter. 9 41443 [22] Jiang H, Qiao Z, Liu H and Niu Q 2012 Phys. Rev. B 85 45445 [23] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 [24] He K, Wang Y and Xue Q K 2014 Natl. Sci. Rev. 1 38 [25] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 66501 [26] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226 [27] Luo W and Qi X L 2013 Phys. Rev. B 87 085431 [28] Li P, Yu J, Wang Y and Luo W 2021 Phys. Rev. B 103 155118 [29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [30] Mortensen J J, Hansen L B and Jacobsen K W 2005 Phys. Rev. B 71 035109 [31] Shi J M, Peeters F M, Hai G Q and Devreese J T 1992 Phys. Rev. B 44 5692 [32] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [33] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851 [34] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304 [35] Cadelano E, Palla P L, Giordano S and Colombo L 2010 Phys. Rev. B 82 235414 [36] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 [37] Guo S D, Zhu J X, Mu W Q and Liu B G 2021 Phys. Rev. B 104 224428 [38] Cadelano E and Colombo L 2012 Phys. Rev. B 85 245434 [39] Guo G C, Wang R Z, Ming B M, Wang C, Luo S W, Zhang M and Yan H 2019 J. Mater. Chem. A 7 2106 [40] Chitara B and Ya'akobovitz A 2018 Nanoscale 10 13022 [41] Goodenough J B 1955 Phys. Rev. 100 564 [42] Kanamori J 1959 J. Phys. Chem. Solids 10 87 [43] Heitler W and London F 1927 Z. Phys. 44 455 [44] Bonchev D 1981 Int. J. Quantum Chem. 19 673 [45] Šmejkal L, Mokrousov Y, Yan B and MacDonald A H 2018 Nat. Phys. 14 242 [46] Rohringer G, Valli A and Toschi A 2012 Phys. Rev. B 86 125114 [47] Mori H, Tanaka S and Mori T 1998 Phys. Rev. B 57 12023 [48] Fanfarillo L and Bascones E 2015 Phys. Rev. B 92 075136 [49] Jin Y J, Wang R, Zhao J Z, Du Y P, C. Di Zheng, Gan L Y, Liu J F, Xu H and Tong S Y 2017 Nanoscale 9 13112 [50] Liu Z, Zhao G, Liu B, Wang Z F, Yang J and Liu F 2018 Phys. Rev. Lett. 121 246401 [51] Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G, Bansil A, Jeng H T, Lin H and Hasan M Z 2016 Phys. Rev. B 93 121113 [52] Xu Q, Yu R, Fang Z, Dai X and Weng H 2017 Phys. Rev. B 95 045136 [53] Shao D F, Gurung G, Zhang S H and Tsymbal E Y 2019 Phys. Rev. Lett. 122 77203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|