Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097302    DOI: 10.1088/1674-1056/ac5d2b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current carrying states in the disordered quantum anomalous Hall effect

Yi-Ming Dai(戴镒明)1,2, Si-Si Wang(王思思)1,2,3, Yan Yu(禹言)4,5, Ji-Huan Guan(关济寰)6,4, Hui-Hui Wang(王慧慧)1,7,2, and Yan-Yang Zhang(张艳阳)1,7,2,3,†
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China;
2 Research Center for Advanced Information Materials, Guangzhou University, Guangzhou 510006, China;
3 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China;
4 SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
5 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
6 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
7 Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510700, China
Abstract  In a quantum Hall effect, flat Landau levels may be broadened by disorder. However, it has been found that in the thermodynamic limit, all extended (or current carrying) states shrink to one single energy value within each Landau level. On the other hand, a quantum anomalous Hall effect consists of dispersive bands with finite widths. We numerically investigate the picture of current carrying states in this case. With size scaling, the spectrum width of these states in each bulk band still shrinks to a single energy value in the thermodynamic limit, in a power law way. The magnitude of the scaling exponent at the intermediate disorder is close to that in the quantum Hall effects. The number of current carrying states obeys similar scaling rules, so that the density of states of current carrying states is finite. Other states in the bulk band are localized and may contribute to the formation of a topological Anderson insulator.
Keywords:  quantum anomalous Hall effect      Chern number      disordered system      localization  
Received:  13 January 2022      Revised:  04 March 2022      Accepted manuscript online:  14 March 2022
PACS:  73.20.Fz (Weak or Anderson localization)  
  73.43.-f (Quantum Hall effects)  
  74.62.En (Effects of disorder)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774336, 12104108, and 61427901) and the Starting Research Fund from Guangzhou University (Grant Nos. RQ2020082 and 62104360).
Corresponding Authors:  Yan-Yang Zhang     E-mail:  yanyang@gzhu.edu.cn

Cite this article: 

Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳) Current carrying states in the disordered quantum anomalous Hall effect 2022 Chin. Phys. B 31 097302

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Hasan M Z and Kane C L 2011 Rev. Mod. Phys. 82 3045
[3] Klitzing K von, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[4] Huo Y and Bhatt R N 1992 Phys. Rev. Lett. 68 1375
[5] Yang K and Bhatt R N 1996 Phys. Rev. Lett. 76 1316
[6] Yang K and Bhatt R N 1999 Phys. Rev. B 59 8144
[7] Yang K and Bhatt R N 1997 Phys. Rev. B 55 R1922(R)
[8] Xie X C, Wang X R and Xie X C 1998 Phys. Rev. Lett. 80 3563
[9] Furusaki A 1999 Phys. Rev. Lett. 82 604
[10] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[11] Liu C X Liu, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[12] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[13] Bestwick A J, Fox E J, Kou X, Pan L, Wang K L and Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201
[14] Wang S W, Xiao D, Dou Z, Cao M, Zhao Y F, Samarth N, Chang C Z, Connolly M R and Smith C G 2020 Phys. Rev. Lett. 125 126801
[15] Li Z and Wang Z F 2020 Chin. Phys. B 29 107101
[16] Zhang Y Y, Chu R L, Zhang F C and Shen S Q 2012 Phys. Rev. B 85 035107
[17] Song Z G, Zhang Y Y, Song J T and Li S S 2016 Sci. Rep. 10 19018
[18] Wang S S, Zhang Y Y, Guan J H, Yu Y, Xia Y and Li S S 2019 Phys. Rev. B 99 125414
[19] Li H, Chen C Z, Jiang H and Xie X C 2021 Phys. Rev. Lett. 127 236402
[20] Zhang Z Q, Chen C Z, Wu Y, Jiang H, Liu J, Sun Q F and Xie X C 2021 Phys. Rev. B 103 075434
[21] Bernevig A, Hughes T and Zhang S C 2006 Science 314 1757
[22] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[23] Boyers E, Crowley P J D, Chandran A and Sushkov A O 2020 Phys. Rev. Lett. 125 160505
[24] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[25] Halperin B I 1982 Phys. Rev. B 25 2185
[26] He Y, Jiang Y, Zhang T, Huang H, Fang C and Jin Z 2019 Chin. Phys. B 28 087102
[27] Liu J S, Han Y Z and Liu C S 2020 Chin. Phys. B 29 010302
[28] Bianco R and Resta R 2011 Phys. Rev. B 84 241106(R)
[29] Bianco R and Resta R 2013 Phys. Rev. Lett. 110 087202
[30] Marrazzo A and Resta R 2017 Phys. Rev. B 95 121114
[31] Ippoliti M and Bhatt R N 2020 Phys. Rev. Lett. 124 086602
[32] Qiao Z, Han Y, Zhang L, Wang K, Deng X and Jiang H 2016 Phys. Rev. Lett. 117 056802
[33] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[34] Zhang Y Y and Shen S Q 2013 Phys. Rev. B 88 195145
[35] Essin A M and Moore J E 2007 Phys. Rev. B 76 165307
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[3] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[4] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[7] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[8] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[11] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[12] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[13] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[14] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[15] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
No Suggested Reading articles found!