Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080302    DOI: 10.1088/1674-1056/ac633b
GENERAL Prev   Next  

Hard-core Hall tube in superconducting circuits

Xin Guan(关欣)1,†, Gang Chen(陈刚)2,3,4, Jing Pan(潘婧)1, and Zhi-Guo Gui(桂志国)1
1 Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China;
2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  The Hall tube as a minimum model to simulate the integer quantum Hall effect is essential for exploring topological physics, while it has not been constructed in the recent developing successfully experiments on superconducting circuits. In this work, we propose a feasible experiment scheme using three legs superconducting circuits with transmon qubits to realize a Hall tube. Then we first investigate its topological properties. Since the time-reversal, particle-hole, and chiral symmetries are all broken for the system, the Hall tube belongs to the A class of the Altland-Zirnbauer classification. We obtain the corresponding topological phase transition both numerically and analytically. Since the chirality is a key character of the quantum Hall effect, we secondly investigate the chiral physics in the Hall tube. We find the topological protected chiral edge currents and discuss its robustness. Finally, we give the possible experimental observations of the topological state and topological protected chiral edge currents.
Keywords:  Hall tube      superconducting circuits      topological phase transition      chiral edge currents  
Received:  18 February 2022      Revised:  16 March 2022      Accepted manuscript online:  01 April 2022
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  73.43.-f (Quantum Hall effects)  
  85.25.Cp (Josephson devices)  
  71.10.-w (Theories and models of many-electron systems)  
Fund: Project supported by the National Key Program of the National Health Commission's "Thirteenth Five-Year Plan" (Grant No. NHFPC102018), the Ministry of Education Collaborative Education Program (Grant No. 202101029006), the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021223010), the Shanxi Province Higher Education Science and Technology Innovation Program (Grant No. J2021770), and the Natural Science Foundation of Taiyuan University, China (Grant No. 21TYKQ22).
Corresponding Authors:  Xin Guan     E-mail:

Cite this article: 

Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国) Hard-core Hall tube in superconducting circuits 2022 Chin. Phys. B 31 080302

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Moore J 2010 Nature 464 194
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[5] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[6] Senthil T and Levin M 2013 Phys. Rev. Lett. 110 046801
[7] Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z and Chen Y P 2014 Nat. Phys. 10 956
[8] Kozlovsky R, Graf A, Kochan D, Richter K and Gorini C 2020 Phys. Rev. Lett. 124 126804
[9] Klitzing K, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J and Qi X 2020 Nat. Rev. Phys. 2 397
[10] Hofstadter D R 1976 Phys. Rev. B 14 2239
[11] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
[12] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301
[13] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302
[14] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbéne S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162
[15] Stuhl B K, Lu H I, Aycock L M, Genkina D and Spielman I B 2015 Science 349 1514
[16] Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M and Fallani L 2015 Science 349 1510
[17] Han J H, Kang J H and Shin Y 2019 Phys. Rev. Lett. 122 065303
[18] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[19] Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718-719 1
[20] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
[21] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, et al. 2019 Nature 574 505
[22] Wendin G 2017 Rep. Phys. 80 106001
[23] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247
[24] Houck A A, Türeci H E and Koch J 2012 Nat. Phys. 8 292
[25] Schmidt S and Koch J 2013 Ann. Phys. 525 395
[26] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[27] Kyriienko O and Srensen A S 2018 Phys. Rev. Appl. 9 064029
[28] Schroer M D, Kolodrubetz M H, Kindel W F, Sandberg M, Gao J, Vissers M R, Pappas D P, Polkovnikov A and Lehnert K W 2014 Phys. Rev. Lett. 113 050402
[29] Roushan P, Neill C, Chen Y, Kolodrubetz M, et al. 2014 Nature 515 241
[30] Wang T, Zhang Z, Xiang L, Gong Z, Wu J and Yin Y 2018 Sci. China-Phys. Mech. Astron. 61 047411
[31] Tan X, Zhang D W, Liu Q, Xue G, Yu H F, Zhu Y Q, Yan H, Zhu S L and Yu Y 2018 Phys. Rev. Lett. 120 130503
[32] Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 130501
[33] Flurin E, Ramasesh V V, Hacohen G S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023
[34] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, et al. 2019 Phys. Rev. Lett. 123 080501
[35] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L and Sun L 2020 Phys. Rev. Appl. 14 024070
[36] Han X. Y, Cai T Q, Li X G, Wu Y K, Ma Y W, Ma Y L, Wang J H, Zhang H Y, Song Y P and Duan L M 2020 Phys. Rev. A 102 022619
[37] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[38] Caldwell S, Didier N, Ryan C A, Sete E A, Hudson A, Karalekas P, Manenti R, da Silva M P, Sinclair R and Acala E 2018 Phys. Rev. Appl. 10 034050
[39] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009
[40] Reagor M, Osborn C B, Tezak N, Staley A, Prawiroatmodjo G, Scheer M, Alidoust N, Sete E A, Didier N and da Silva M P 2018 Sci. Adv. 4 eaao3603
[41] Girardeau M 1960 J. Math. Phys. 1 516
[42] Rigol M and Muramatsu A 2005 Phys. Rev. A 72 013604
[43] Vidmar L, Ronzheimer J P, Schreiber M, Braun S, Hodgman S S, Langer S, Meisner F H, Bloch I and Schneider U 2015 Phys. Rev. Lett. 115 175301
[44] Ardila L A P, Hey M and Eckardt A 2018 Phys. Rev. Lett. 121 260401
[45] Yanay Y, Braumüller J, Gustavsson S and Oliver W D 2020 npj Quantum Inf. 6 58
[46] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
[47] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[48] Ludwig A W W 2016 Phys. Scr. T. T168 014001
[49] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[50] Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B and Bloch I 2014 Nat. Phys. 10 588
[51] Piraud M, Meisner F H, McCulloch I P, Greschner S, Vekua T and Schollwöck U 2015 Phys. Rev. B 91 140406
[52] Sachdeva R, Metz F, Singh M, Mishra T and Busch T 2018 Phys. Rev. A 98 063612
[53] Guan X, Feng Y, Xue Z Y, Chen G and Jia S 2020 Phys. Rev. A 102 032610
[54] Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M and Greiner M 2017 Nature 546 519
[55] Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H K, Zheng D N, Zhu X B, Wang H, Zhu S Y and Scully M O 2019 Nat. Phys. 15 382
[56] Levin M and Stern A 2009 Phys. Rev. Lett. 103 196803
[57] Klinovaja J, Yacoby A and Loss D 2014 Phys. Rev. B 90 155447
[58] Santos R A, Huang C W, Gefen Y and Gutman D B 2015 Phys. Rev. B 91 205141
[59] Levitin L V, Bennett R G, Casey A, Cowan B, Saunders J, Drung D, Schurig T and Parpia J M 2013 Science 340 841
[60] Autti S, Dmitriev V V, Mäkinen J T, Soldatov A A, Volovik G E, Yudin A N, Zavjalov V V and Eltsov V B 2016 Phys. Rev. Lett. 117 255301
[61] Jia W, Huang Z H, Wei X, Zhao Q and Liu X J 2019 Phys. Rev. B 99 094520
[62] Jiang Y F and Jiang H C 2020 Phys. Rev. Lett. 125 157002
[63] Fauqué B, Sidis Y, Hinkov V, Pailhés S, Lin C T, Chaud X and Bourges P 2006 Phys. Rev. Lett. 96 197001
[64] Morenzoni E, Wojek B M, Suter A, Prokscha T, Logvenov G and Božović I 2011 Nat. Commun. 2 272
[65] Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O'Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H and Martinis J 2017 Nat. Phys. 13 146
[66] Steffen M, Ansmann M, McDermott R, Katz N, Bialczak R C, Lucero E, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Phys. Rev. Lett. 97 050502
[67] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
[68] Barbarino S, Dalmonte M, Fazio R and Santoro G E 2018 Phys. Rev. A 97 013634
[1] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[2] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[3] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[4] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[5] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[6] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[7] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[8] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[9] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[10] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[11] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[12] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
[13] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
[14] Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box
C. Valverde, A.T. Avelar, and B. Baseia . Chin. Phys. B, 2012, 21(3): 030308.
No Suggested Reading articles found!