|
|
Hard-core Hall tube in superconducting circuits |
Xin Guan(关欣)1,†, Gang Chen(陈刚)2,3,4, Jing Pan(潘婧)1, and Zhi-Guo Gui(桂志国)1 |
1 Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China; 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract The Hall tube as a minimum model to simulate the integer quantum Hall effect is essential for exploring topological physics, while it has not been constructed in the recent developing successfully experiments on superconducting circuits. In this work, we propose a feasible experiment scheme using three legs superconducting circuits with transmon qubits to realize a Hall tube. Then we first investigate its topological properties. Since the time-reversal, particle-hole, and chiral symmetries are all broken for the system, the Hall tube belongs to the A class of the Altland-Zirnbauer classification. We obtain the corresponding topological phase transition both numerically and analytically. Since the chirality is a key character of the quantum Hall effect, we secondly investigate the chiral physics in the Hall tube. We find the topological protected chiral edge currents and discuss its robustness. Finally, we give the possible experimental observations of the topological state and topological protected chiral edge currents.
|
Received: 18 February 2022
Revised: 16 March 2022
Accepted manuscript online: 01 April 2022
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
85.25.Cp
|
(Josephson devices)
|
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
Fund: Project supported by the National Key Program of the National Health Commission's "Thirteenth Five-Year Plan" (Grant No. NHFPC102018), the Ministry of Education Collaborative Education Program (Grant No. 202101029006), the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021223010), the Shanxi Province Higher Education Science and Technology Innovation Program (Grant No. J2021770), and the Natural Science Foundation of Taiyuan University, China (Grant No. 21TYKQ22). |
Corresponding Authors:
Xin Guan
E-mail: guanxin810712@163.com
|
Cite this article:
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国) Hard-core Hall tube in superconducting circuits 2022 Chin. Phys. B 31 080302
|
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [2] Moore J 2010 Nature 464 194 [3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [4] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126 [5] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [6] Senthil T and Levin M 2013 Phys. Rev. Lett. 110 046801 [7] Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z and Chen Y P 2014 Nat. Phys. 10 956 [8] Kozlovsky R, Graf A, Kochan D, Richter K and Gorini C 2020 Phys. Rev. Lett. 124 126804 [9] Klitzing K, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J and Qi X 2020 Nat. Rev. Phys. 2 397 [10] Hofstadter D R 1976 Phys. Rev. B 14 2239 [11] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598 [12] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301 [13] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302 [14] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbéne S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162 [15] Stuhl B K, Lu H I, Aycock L M, Genkina D and Spielman I B 2015 Science 349 1514 [16] Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M and Fallani L 2015 Science 349 1510 [17] Han J H, Kang J H and Shin Y 2019 Phys. Rev. Lett. 122 065303 [18] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [19] Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718-719 1 [20] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401 [21] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, et al. 2019 Nature 574 505 [22] Wendin G 2017 Rep. Phys. 80 106001 [23] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247 [24] Houck A A, Türeci H E and Koch J 2012 Nat. Phys. 8 292 [25] Schmidt S and Koch J 2013 Ann. Phys. 525 395 [26] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [27] Kyriienko O and Srensen A S 2018 Phys. Rev. Appl. 9 064029 [28] Schroer M D, Kolodrubetz M H, Kindel W F, Sandberg M, Gao J, Vissers M R, Pappas D P, Polkovnikov A and Lehnert K W 2014 Phys. Rev. Lett. 113 050402 [29] Roushan P, Neill C, Chen Y, Kolodrubetz M, et al. 2014 Nature 515 241 [30] Wang T, Zhang Z, Xiang L, Gong Z, Wu J and Yin Y 2018 Sci. China-Phys. Mech. Astron. 61 047411 [31] Tan X, Zhang D W, Liu Q, Xue G, Yu H F, Zhu Y Q, Yan H, Zhu S L and Yu Y 2018 Phys. Rev. Lett. 120 130503 [32] Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 130501 [33] Flurin E, Ramasesh V V, Hacohen G S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023 [34] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, et al. 2019 Phys. Rev. Lett. 123 080501 [35] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L and Sun L 2020 Phys. Rev. Appl. 14 024070 [36] Han X. Y, Cai T Q, Li X G, Wu Y K, Ma Y W, Ma Y L, Wang J H, Zhang H Y, Song Y P and Duan L M 2020 Phys. Rev. A 102 022619 [37] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 [38] Caldwell S, Didier N, Ryan C A, Sete E A, Hudson A, Karalekas P, Manenti R, da Silva M P, Sinclair R and Acala E 2018 Phys. Rev. Appl. 10 034050 [39] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009 [40] Reagor M, Osborn C B, Tezak N, Staley A, Prawiroatmodjo G, Scheer M, Alidoust N, Sete E A, Didier N and da Silva M P 2018 Sci. Adv. 4 eaao3603 [41] Girardeau M 1960 J. Math. Phys. 1 516 [42] Rigol M and Muramatsu A 2005 Phys. Rev. A 72 013604 [43] Vidmar L, Ronzheimer J P, Schreiber M, Braun S, Hodgman S S, Langer S, Meisner F H, Bloch I and Schneider U 2015 Phys. Rev. Lett. 115 175301 [44] Ardila L A P, Hey M and Eckardt A 2018 Phys. Rev. Lett. 121 260401 [45] Yanay Y, Braumüller J, Gustavsson S and Oliver W D 2020 npj Quantum Inf. 6 58 [46] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142 [47] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125 [48] Ludwig A W W 2016 Phys. Scr. T. T168 014001 [49] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [50] Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B and Bloch I 2014 Nat. Phys. 10 588 [51] Piraud M, Meisner F H, McCulloch I P, Greschner S, Vekua T and Schollwöck U 2015 Phys. Rev. B 91 140406 [52] Sachdeva R, Metz F, Singh M, Mishra T and Busch T 2018 Phys. Rev. A 98 063612 [53] Guan X, Feng Y, Xue Z Y, Chen G and Jia S 2020 Phys. Rev. A 102 032610 [54] Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M and Greiner M 2017 Nature 546 519 [55] Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H K, Zheng D N, Zhu X B, Wang H, Zhu S Y and Scully M O 2019 Nat. Phys. 15 382 [56] Levin M and Stern A 2009 Phys. Rev. Lett. 103 196803 [57] Klinovaja J, Yacoby A and Loss D 2014 Phys. Rev. B 90 155447 [58] Santos R A, Huang C W, Gefen Y and Gutman D B 2015 Phys. Rev. B 91 205141 [59] Levitin L V, Bennett R G, Casey A, Cowan B, Saunders J, Drung D, Schurig T and Parpia J M 2013 Science 340 841 [60] Autti S, Dmitriev V V, Mäkinen J T, Soldatov A A, Volovik G E, Yudin A N, Zavjalov V V and Eltsov V B 2016 Phys. Rev. Lett. 117 255301 [61] Jia W, Huang Z H, Wei X, Zhao Q and Liu X J 2019 Phys. Rev. B 99 094520 [62] Jiang Y F and Jiang H C 2020 Phys. Rev. Lett. 125 157002 [63] Fauqué B, Sidis Y, Hinkov V, Pailhés S, Lin C T, Chaud X and Bourges P 2006 Phys. Rev. Lett. 96 197001 [64] Morenzoni E, Wojek B M, Suter A, Prokscha T, Logvenov G and Božović I 2011 Nat. Commun. 2 272 [65] Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O'Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H and Martinis J 2017 Nat. Phys. 13 146 [66] Steffen M, Ansmann M, McDermott R, Katz N, Bialczak R C, Lucero E, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Phys. Rev. Lett. 97 050502 [67] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511 [68] Barbarino S, Dalmonte M, Fazio R and Santoro G E 2018 Phys. Rev. A 97 013634 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|