Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127501    DOI: 10.1088/1674-1056/ac89d8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds

Hao Sun(孙浩)1,2, Junfeng Wang(王俊峰)2, Lu Tian(田路)2, Jianjian Gong(巩建建)1,2, Zhaojun Mo(莫兆军)2,†, Jun Shen(沈俊)3, and Baogen Shen(沈保根)1,‡
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China;
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China;
3 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate the structural, magnetic, and magnetocaloric effects (MCE) of Tm$_{1-x}$Er$_{x}$CuAl ($x = 0.25$, 0.5, and 0.75) compounds. The compounds undergo a second-order phase transition originating from the ferromagnetic to paramagnetic transition around 3.2 K, 5 K, and 6 K, respectively. The maximum magnetic entropy changes (${-\Delta S}_{\scriptscriptstyle{\rm M}}^{\rm max}$) of Tm$_{1-x}$Er$_{x}$CuAl ($x = 0.25$, 0.5, and 0.75) are 17.1 J$\cdot$kg$^{-1}\cdot$K$^{-1}$, 18.1 J$\cdot$kg$^{-1}\cdot$K$^{-1}$, and 17.5 J$\cdot$kg$^{-1}\cdot$K$^{-1}$ under the magnetic field in the range of 0-2 T, with the corresponding refrigerant capacity (RC) values of 131 J$\cdot$kg$^{-1}$, 136 J$\cdot$kg$^{-1}$, and 126 J$\cdot$kg$^{-1}$, respectively. The increase of ${-\Delta S}_{\scriptscriptstyle{\rm M}}^{\rm max}$ for Tm$_{0.5}$Er$_{0.5}$CuAl may be relevant to the change of magnetic moment distribution of Er and stress coming from element substitution. This work provides several compounds that can enrich the family of giant MCE materials in the cryogenic region.
Keywords:  TmCuAl-based alloy      magnetic property      magnetocaloric effect      magnetic refrigeration  
Received:  14 June 2022      Revised:  09 August 2022      Accepted manuscript online:  16 August 2022
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.47.Np (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52171195, and 52171054), the National Science Foundation for Distinguished Young Scholars (Grant No. 51925605), and the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200042).
Corresponding Authors:  Zhaojun Mo, Baogen Shen     E-mail:  mozhaojun@gia.cas.cn;shenbg@aphy.iphy.ac.cn

Cite this article: 

Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根) Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds 2022 Chin. Phys. B 31 127501

[1] Zhang H, Li Y W, Liu E K, Ke Y J, Jin J L, Long Y and Shen B G 2015 Sci. Rep. 5 11929
[2] Kimel A V, Kirilyuk A, Tsvetkov, Pisarev R V and Rasing T 2004 Nature 429 850
[3] Pecharsky V K and Gschneidner K A 1997 Appl. Phys. Lett. 70 3299
[4] Chen D, Taylor K P, Hall Q and Kaplan J M 2016 Genetics 204 1151
[5] Zhang Z Y, Tang Q, Wang F C, Zhang H Y, Zhou Y X, Xia A L, Li H L, Chen S S and Li W H 2019 Intermetallics 111 106500
[6] Dong X S, Feng J, Yi Y L and Li L W 2018 J. Appl. Phys. 124 093901
[7] Zhang Y K. Tian Y, Zhang Z Q, Jia Y S, Zhang B, Jiang M Q, Wang J and Ren Z M 2022 Acta Mater. 226 117669
[8] Xu P, Hu L, Zhang Z Q, Wang H F and Li L W 2022 Acta Mater. 236 118114
[9] Xu P, Ma Z P, Wang P F, Wang H F and Li L W 2021 Mater. Today Phys. 20 100470
[10] Zhang Y K, Zhu J, Li S, Zhang Z Q, Wang J and Ren Z M 2022 Sci. China Mater. 65 1345
[11] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[12] Giguere A, Foldeaki M, Schnelle W and Gmelin E 1999 J. Phys.: Condens. Matter. 11 6969
[13] Pecharsky V K and Gschneidner K A 1998 Phys. Rev. B 58 12110
[14] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
[15] Li L W, Yuan Y, Zhang Y K, Namiki T, Nihimura K, Pöttgen R and Zhou S Q 2015 Appl. Phys. Lett. 107 132401
[16] Gupta S and Suresh K G 2015 J. Alloys Compd. 618 562
[17] Wang L C, Dong Q Y, Mo Z J, Xu Z Y, Hu F X, Sun J R and Shen B G 2013 J. Appl. Phys. 114 163915
[18] Oesterreicher H 1973 J. Less Common Met. 30 225
[19] Dong Q Y, Chen J, Shen J, Sun J R and Shen B G 2012 J. Magn. Magn. Mater. 324 2676
[20] Javorský P, Burlet P, Ressouche E, Sechovský V, Michor H and Lapertot G 1996 Physica B 225 230
[21] Mo Z J, Shen J, Yan L Q, Wu J F and Wang L C 2013 Appl. Phys. Lett. 102 192407
[22] Javorsky P, Gubbens P C M, Mulders A M, Prokeš K, Stüsser N, Gortenmulder T J and Hendrikx R W A 2002 J. Magn. Magn. Mater. 251 123
[23] Zheng X Q, Zhang B, Wu H, Hu F X, Huang Q Z and Shen B G 2016 J. Appl. Phys. 120 163907
[24] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
[25] Wang J L, Marquina C, Ibarra M R and Wu G H 2006 Phys. Rev. B 73 094436
[26] Farrell J and Wallace W E 1966 J. Inorg. Chem. 5 105
[27] Gignoux D and Givord F 1983 J. Magn. Magn. Mater. 31 217
[28] Ćwik J, Koshkid'ko Y, Nenkov K, Tereshina-Chitrova E and Kolchugina N 2021 J. Alloys Compd. 859 157870
[29] Hao J Z, Hu F X, Zhou H B, Liang W H, Yu Z B, Shen F R, Gao Y H, Qiao K M, Li J, Zhang C, Wang B J, Wang J, He J, Sun J R and Shen B G 2020 Scr. Mater. 186 84
[30] Franco V and Conde A 2010 Int. J. Refrig. 33 465
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[10] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[11] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[12] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[13] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[14] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[15] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
No Suggested Reading articles found!