|
|
Topological phase transition in cavity optomechanical system with periodical modulation |
Zhi-Xu Zhang(张志旭)1, Lu Qi(祁鲁)2, Wen-Xue Cui(崔文学)1,†, Shou Zhang(张寿)1, and Hong-Fu Wang(王洪福)1,‡ |
1 Department of Physics, College of Science, Yanbian University, Yanji 133002, China; 2 School of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract We investigate the topological phase transition and the enhanced topological effect in a cavity optomechanical system with periodical modulation. By calculating the steady-state equations of the system, the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated. It is found that the cavity optomechanical system can be modulated to different topological Su-Schrieffer-Heeger (SSH) phases via designing the optomechanical couplings legitimately. Meanwhile, combining the effective optomechanical couplings and the probability distributions of gap states, we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields. Moreover, we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.
|
Received: 09 November 2021
Revised: 21 December 2021
Accepted manuscript online: 12 January 2022
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61822114, 12074330, and 62071412). |
Corresponding Authors:
Wen-Xue Cui, Hong-Fu Wang
E-mail: cuiwenxue@ybu.edu.cn;hfwang@ybu.edu.cn
|
Cite this article:
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福) Topological phase transition in cavity optomechanical system with periodical modulation 2022 Chin. Phys. B 31 070301
|
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [2] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [3] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [4] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [5] Fu L 2011 Phys. Rev. Lett. 106 106802 [6] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [7] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401 [8] Li L, Yang C and Chen S 2015 Europhys. Lett. 112 10004 [9] Niu Y, Chung S B, Hsu C H, Mandal I, Raghu S and Chakravarty S 2012 Phys. Rev. B 85 035110 [10] Liu H F, Su Z X and Zhang Z Q 2020 Chin. Phys. B 29 050502 [11] Zhang G and Song Z 2015 Phys. Rev. Lett. 115 177204 [12] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 [13] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [14] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802 [15] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402 [16] Jiang H, Yang C and Chen S 2018 Phys. Rev. A 98 052116 [17] Wang H Y, Liu W M 2020 Chin. Phys. B 29 047301 [18] Xu Z H, Li L H and Chen S 2013 Phys. Rev. Lett. 110 215301 [19] Xu Z H and Chen S 2013 Phys. Rev. B 88 045110 [20] Zhu S L, Wang Z D, Chan Y H and Duan L M 2013 Phys. Rev. Lett. 110 075303 [21] Yan P, Lin R, Chen H, Zhang H, Liu A, Yang H and Ruan S 2014 IEEE Photon. Technol. Lett. 27 264 [22] Gao L, Zhu T, Huang W and Luo Z 2015 IEEE Photon. J. 7 1 [23] Ke S, Zhao D, Liu J, Liu Q, Liao Q, Wang B and Lu P 2019 Opt. Express 27 13858 [24] Cui W X, Xing Y, Qi L, Han X, Liu S T, Zhang S and Wang H F 2020 Opt. Express 28 37026 [25] Longhi S 2013 Opt. Lett. 38 3716 [26] Blanco-Redond A, Andonegui I, Collins M J, Harari G, Lumer Y, Rechtsman M C, Eggleton B J and Segev M 2016 Phys. Rev. Lett. 116 163901 [27] Liu Y C, Xiao Y F, Luan X and Wong C W 2013 Phys. Rev. Lett. 110 153606 [28] Bai C H, Wang D Y, Zhang S, Liu S and Wang H F 2019 Photonics Res. 7 1229 [29] Dobrindt J M, Wilson-Rae I and Kippenberg T J 2008 Phys. Rev. Lett. 101 263602 [30] Vitali D, Gigan S, Ferreira A, Bohm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [31] Ghobadi R, Kumar S, Pepper B, Bouwmeester D, Lvovsky A and Simon C 2014 Phys. Rev. Lett. 112 080503 [32] Purdy T P, Yu P L, Peterson R, Kampel N and Regal C 2013 Phys. Rev. X 3 031012 [33] Nunnenkamp A, Borkje K, Harris J and Girvin S 2010 Phys. Rev. A 82 021806 [34] Bai C H, Wang D Y, Zhang S and Wang H F 2019 Sci. China Phys. Mech. Astron 62 970311 [35] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [36] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [37] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301 [38] Jing J, Ma Y Y and Zhang Q Y 2020 Chin. Phys. B 29 080303 [39] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302 [40] Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett. 109 106402 [41] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreiso F W, Nolte S, Segev M and Szameit A 2013 Nature 496 196 [42] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402 [43] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 [44] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237 [45] Li T, Duca L, Reitter M, Grusdt F, Demler E, Endres M, Schleier-Smith M, Bloch I and Schneider U 2016 Science 352 1094 [46] Cui W X, Xing Y, Qi L, Han X, Liu S T, Zhang S and Wang H F 2020 Laser Physics Letters 17 055206 [47] Leder M, Grossert C, Sitta L, Genske M, Rosch A and Weitz M 2016 Nat. Commun. 7 13112 [48] Meier E J, An F A and Gadway B 2016 Nat. Commun. 7 13986 [49] Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y and Zhang B 2015 Phys. Rev. Lett. 114 114301 [50] Li Y, Liu Y N and Zhang X 2020 Chin. Phys. B 29 106301 [51] Roque T F, Peano V, Yevtushenko O M and Marquardt F 2017 New J. Phys 19 013006 [52] Qi L, Xing Y, Wang H F, Zhu A D and Zhang S 2017 Opt. Express 25 17948 [53] Raeisi S and Marquardt F 2020 Phys. Rev. A 101 023814 [54] Qi L, Wang G L, Liu S T, Zhang S and Wang H F 2021 Front. Phys. 16 12503 [55] Tsindlekht M, Golosovsky M, Chayet H and Davidov D 1994 Appl. Phys. Lett. 65 2875 [56] Qi L, Xing Y, Liu S T, Zhang S and Wang H F 2020 Phys. Rev. A 101 052325 [57] Farace A and Giovannetti V 2012 Phys. Rev. A 86 013820 [58] Xu Z H, Zhang R, Chen S, Fu L B and Zhang Y B 2020 Phys. Rev. A 101 013635 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|