CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Large positive magnetoresistance in photocarrier-doped potassium tantalites |
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新)† |
Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract We report on the high-field magnetotransport of KTaO3 single crystals, which are a promising candidate for study in the extreme quantum limit. By photocarrier doping with 360 nm light, we observe a significant positive, non-saturating, and linear magnetoresistance at low temperatures accompanied by a decreasing Hall coefficient. When cooling down to 10 K, the magnetoresistance value of KTaO3 (100) reaches ~ 433% at a magnetic field of 12 T. Such behavior can be attributed to all the electrons occupying only the lowest Landau level in the extreme quantum limit. Light inhomogeneity may also contribute to large linear magnetoresistance. These results provide insights into novel magnetic devices based on complex materials and add a new family of materials with positive magnetoresistance.
|
Received: 20 February 2022
Revised: 08 April 2022
Accepted manuscript online: 14 April 2022
|
PACS:
|
73.43.Qt
|
(Magnetoresistance)
|
|
73.50.Fq
|
(High-field and nonlinear effects)
|
|
73.40.Gk
|
(Tunneling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51572222), Key Research Project of the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2021JZ-08 and 2020JM-088), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-041), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017OQD074 and 310201911cx044). |
Corresponding Authors:
Ke-Xin Jin
E-mail: jinkx@nwpu.edu.cn
|
Cite this article:
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新) Large positive magnetoresistance in photocarrier-doped potassium tantalites 2022 Chin. Phys. B 31 127302
|
[1] Cong H V and Mesnard G 2010 Phys. Stat. Sol. 51 777 [2] Honda S, Ishikawa T, Takai K, Mitarai Y and Harada H 2004 J. Appl. Phy. 96 5915 [3] Mcguire T R, Hempstead R D and Krongelb S 1976 AIP Conference Proceedings 29 526 [4] Moser J, Matosabiague A, Schuh D, Wegscheider W, Fabian J and Weiss D 2007 Phys. Rev. Lett. 99 056601 [5] Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B and Moodera J S 2007 Phys. Rev. Lett. 98 016601 [6] Piraux L, George J M, Despres J F, Leroy C and Fert A 1994 J. Mag. Mag. Mater. 65 2484 [7] Shraiman B I and Mueller R 1996 Phys. Rev. Lett. 77 175 [8] Fontcuberta J, Martínez B, Seffar A, Piñol S, García-Muñoz J L and Obradors X 1996 Phys. Rev. Lett. 76 1122 [9] Delmo M P, Yamamoto S, Kasai S, Ono T and Kobayashi K 2009 Nature 457 1112 [10] Liu K, Chien C L, Searson P C and Yu Z K 1998 Appl. Phys. Lett. 73 1436 [11] Yang F Y, Liu K, Hong K, Reich D H, Searson P C and Chien C L 1999 Science 284 1335 [12] Wu B, Barrena V, Suderow H and Guillamón I 2020 Phys. Rev. Res. 2 022042 [13] Friedman A L, Tedesco J L, Campbell P M, Culbertson J C, Aifer E, Perkins F K, Ward R L, Hite J K, Eddy C R, Jernigan G G and Gaskill D K 2010 Nano Lett. 10 3962 [14] Haeni J H and Al E 2004 Nature 430 758 [15] Hideki, Kato, Akihiko and Kudo 2002 J. Phys. Chem. B 106 5029 [16] Higuchi T, Tsukamoto T, Kobayashi K, Ishiwata Y and Shin S 2000 Phys. Rev. B 61 12860 [17] Li Z, He W, Xiong T, Wang Y, Zhang J, Guo C, Lan K, Shang S, Zhang Y and Li J 2020 Bio Res. 15 5871 [18] William C M, Muthu S P and Ramasamy P 2020 J. Mater. Sci. Mater. Electron. 31 9894 [19] Misra S, Zhang D, Lu P and Wang H 2020 Nanoscale 12 23673 [20] Wemple S H 1965 Phys. Rev. 137 A1575 [21] Zhang H, Yu Y, Zhang X, Hui Z and Sun J 2018 Phys. Rev. Lett. 121 116803 [22] Yoshikawa A, Uchida K, Koumoto K, Kato T, Ikuhara Y and Ohta H 2009 Appl. Phys. Express 2 121103 [23] Nakamura H and Kimura T 2009 Phys. Rev. B 80 121308 [24] Ojha S K, Gogoi S K, Patidar M M, Patel R K, Mandal P, Kumar S, Venkatesh R, Ganesan V, Jain M and Middey S 2020 Adv. Quantum Technologies 3 2000021 [25] Ueno K, Nakamura S, Shimotani H, Yuan H T, Kimura N, Nojima T, Aoki H, Iwasa Y and Kawasaki M 2011 Nat. Nanotech. 6 408 [26] Harashima S, Bell C, Kim M, Yajima T, Hikita Y, Hwang H Y and Bell C 2013 Phys. Rev. B 88 085102 [27] Ma Y, Niu J, Xing W, Yao Y and Han W 2020 Chin. Phys. Lett. 37 117401 [28] Zhang H, Ma Y, Zhang H, Chen X, Wang S, Li G, Yun Y, Yan X, Chen Y and Hu F X 2019 Nano Lett. 19 1605 [29] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J and Ahn C H 2015 APL Mater. 3 036104 [30] Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S and Chakraverty S 2020 Nat. Commun. 11 874 [31] Zhang H, Yan X, Zhang J, Zhang J, Han F, Huang H, Qi S, Shi W, Shen B and Sun J 2019 Mater. Res. Express 6 086448 [32] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J and Fisher B 2021 Science 371 716 [33] Wang Y, Zhang Z, Cheng J, Zhang Q, Tang W and Yang K 2020 J. Mater. Chem. C 8 14230 [34] Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E and Winkler D 2007 Phys. Rev. B 75 121404 [35] Huijben M, Brinkman A, Koster G, Rijnders G, Hilgenkamp H and Blank D 2010 Adv. Mater. 21 1665 [36] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A and Broto J M 2007 Phys. Rev. Lett. 98 216803 [37] Ariando A, Wang X, Baskaran G, Liu Z Q, Huijben J, Yi J B, Annadi A, Barman A R, Rusydi A and Dhar S 2011 Nat. Commun. 2 188 [38] Kozuka Y, Susaki T and Hwang H Y 2008 Phys. Rev. Lett. 101 096601 [39] Frova A 1968 Nuovo Cimento B 55 1 [40] Hosler W R and Frederikse H 1969 Solid State Commun. 7 1443 [41] Stemmer S and Allen S J 2018 Rep. Prog. Phys. 81 062502 [42] Kozuka Y, Hikita Y, Susaki T and Hwang H Y 2007 Phys. Rev. B 76 085129 [43] Gan Y, Christensen D V, Zhang Y, Zhang H, Krishnan D, Zhong Z, Niu W, Carrad D J, Norrman K, von Soosten M, Jespersen T S, Shen B, Gauquelin N, Verbeeck J, Sun J, Pryds N and Chen Y 2019 Adv. Mater. 31 1805970 [44] Hulm J K, Matthias B T and Long E A 1950 Phys. Rev. 79 885 [45] Lifshitz I and Peschanskii V 1959 Soviet Phys-JETP-USSR 8 875 [46] Abrikosov A A 1998 Phys. Rev. B 58 2788 [47] Abrikosov A A 2000 Europhys. Lett. 49 789 [48] Xu R, Husmann A, Rosenbaum T F, Saboungi M L and Littlewood P B 1997 Nature 390 57 [49] Wang C C, Liang C T, Jiang Y T, Chen Y F, Cooper N R, Simmons M Y and Ritchie D A 2007 Appl. Phys. Lett. 90 252106 [50] Khouri T, Zeitler U, Reichl C, Wegscheider W, Hussey N E, Wiedmann S and Maan J C 2016 Phys. Rev. Lett. 117 256601 [51] Ji Z, Ji W J, Xu J, Geng X Y and Zhang S T 2017 Sci. Adv. 3 e1701473 [52] Hu J S and Rosenbaum T F 2008 Nat. Mater. 7 697 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|