Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127302    DOI: 10.1088/1674-1056/ac6742
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Large positive magnetoresistance in photocarrier-doped potassium tantalites

Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新)
Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  We report on the high-field magnetotransport of KTaO3 single crystals, which are a promising candidate for study in the extreme quantum limit. By photocarrier doping with 360 nm light, we observe a significant positive, non-saturating, and linear magnetoresistance at low temperatures accompanied by a decreasing Hall coefficient. When cooling down to 10 K, the magnetoresistance value of KTaO3 (100) reaches ~ 433% at a magnetic field of 12 T. Such behavior can be attributed to all the electrons occupying only the lowest Landau level in the extreme quantum limit. Light inhomogeneity may also contribute to large linear magnetoresistance. These results provide insights into novel magnetic devices based on complex materials and add a new family of materials with positive magnetoresistance.
Keywords:  photocarriers      large positive magnetoresistance      extreme quantum limit  
Received:  20 February 2022      Revised:  08 April 2022      Accepted manuscript online:  14 April 2022
PACS:  73.43.Qt (Magnetoresistance)  
  73.50.Fq (High-field and nonlinear effects)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51572222), Key Research Project of the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2021JZ-08 and 2020JM-088), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-041), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017OQD074 and 310201911cx044).
Corresponding Authors:  Ke-Xin Jin     E-mail:  jinkx@nwpu.edu.cn

Cite this article: 

Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新) Large positive magnetoresistance in photocarrier-doped potassium tantalites 2022 Chin. Phys. B 31 127302

[1] Cong H V and Mesnard G 2010 Phys. Stat. Sol. 51 777
[2] Honda S, Ishikawa T, Takai K, Mitarai Y and Harada H 2004 J. Appl. Phy. 96 5915
[3] Mcguire T R, Hempstead R D and Krongelb S 1976 AIP Conference Proceedings 29 526
[4] Moser J, Matosabiague A, Schuh D, Wegscheider W, Fabian J and Weiss D 2007 Phys. Rev. Lett. 99 056601
[5] Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B and Moodera J S 2007 Phys. Rev. Lett. 98 016601
[6] Piraux L, George J M, Despres J F, Leroy C and Fert A 1994 J. Mag. Mag. Mater. 65 2484
[7] Shraiman B I and Mueller R 1996 Phys. Rev. Lett. 77 175
[8] Fontcuberta J, Martínez B, Seffar A, Piñol S, García-Muñoz J L and Obradors X 1996 Phys. Rev. Lett. 76 1122
[9] Delmo M P, Yamamoto S, Kasai S, Ono T and Kobayashi K 2009 Nature 457 1112
[10] Liu K, Chien C L, Searson P C and Yu Z K 1998 Appl. Phys. Lett. 73 1436
[11] Yang F Y, Liu K, Hong K, Reich D H, Searson P C and Chien C L 1999 Science 284 1335
[12] Wu B, Barrena V, Suderow H and Guillamón I 2020 Phys. Rev. Res. 2 022042
[13] Friedman A L, Tedesco J L, Campbell P M, Culbertson J C, Aifer E, Perkins F K, Ward R L, Hite J K, Eddy C R, Jernigan G G and Gaskill D K 2010 Nano Lett. 10 3962
[14] Haeni J H and Al E 2004 Nature 430 758
[15] Hideki, Kato, Akihiko and Kudo 2002 J. Phys. Chem. B 106 5029
[16] Higuchi T, Tsukamoto T, Kobayashi K, Ishiwata Y and Shin S 2000 Phys. Rev. B 61 12860
[17] Li Z, He W, Xiong T, Wang Y, Zhang J, Guo C, Lan K, Shang S, Zhang Y and Li J 2020 Bio Res. 15 5871
[18] William C M, Muthu S P and Ramasamy P 2020 J. Mater. Sci. Mater. Electron. 31 9894
[19] Misra S, Zhang D, Lu P and Wang H 2020 Nanoscale 12 23673
[20] Wemple S H 1965 Phys. Rev. 137 A1575
[21] Zhang H, Yu Y, Zhang X, Hui Z and Sun J 2018 Phys. Rev. Lett. 121 116803
[22] Yoshikawa A, Uchida K, Koumoto K, Kato T, Ikuhara Y and Ohta H 2009 Appl. Phys. Express 2 121103
[23] Nakamura H and Kimura T 2009 Phys. Rev. B 80 121308
[24] Ojha S K, Gogoi S K, Patidar M M, Patel R K, Mandal P, Kumar S, Venkatesh R, Ganesan V, Jain M and Middey S 2020 Adv. Quantum Technologies 3 2000021
[25] Ueno K, Nakamura S, Shimotani H, Yuan H T, Kimura N, Nojima T, Aoki H, Iwasa Y and Kawasaki M 2011 Nat. Nanotech. 6 408
[26] Harashima S, Bell C, Kim M, Yajima T, Hikita Y, Hwang H Y and Bell C 2013 Phys. Rev. B 88 085102
[27] Ma Y, Niu J, Xing W, Yao Y and Han W 2020 Chin. Phys. Lett. 37 117401
[28] Zhang H, Ma Y, Zhang H, Chen X, Wang S, Li G, Yun Y, Yan X, Chen Y and Hu F X 2019 Nano Lett. 19 1605
[29] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J and Ahn C H 2015 APL Mater. 3 036104
[30] Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S and Chakraverty S 2020 Nat. Commun. 11 874
[31] Zhang H, Yan X, Zhang J, Zhang J, Han F, Huang H, Qi S, Shi W, Shen B and Sun J 2019 Mater. Res. Express 6 086448
[32] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J and Fisher B 2021 Science 371 716
[33] Wang Y, Zhang Z, Cheng J, Zhang Q, Tang W and Yang K 2020 J. Mater. Chem. C 8 14230
[34] Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E and Winkler D 2007 Phys. Rev. B 75 121404
[35] Huijben M, Brinkman A, Koster G, Rijnders G, Hilgenkamp H and Blank D 2010 Adv. Mater. 21 1665
[36] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A and Broto J M 2007 Phys. Rev. Lett. 98 216803
[37] Ariando A, Wang X, Baskaran G, Liu Z Q, Huijben J, Yi J B, Annadi A, Barman A R, Rusydi A and Dhar S 2011 Nat. Commun. 2 188
[38] Kozuka Y, Susaki T and Hwang H Y 2008 Phys. Rev. Lett. 101 096601
[39] Frova A 1968 Nuovo Cimento B 55 1
[40] Hosler W R and Frederikse H 1969 Solid State Commun. 7 1443
[41] Stemmer S and Allen S J 2018 Rep. Prog. Phys. 81 062502
[42] Kozuka Y, Hikita Y, Susaki T and Hwang H Y 2007 Phys. Rev. B 76 085129
[43] Gan Y, Christensen D V, Zhang Y, Zhang H, Krishnan D, Zhong Z, Niu W, Carrad D J, Norrman K, von Soosten M, Jespersen T S, Shen B, Gauquelin N, Verbeeck J, Sun J, Pryds N and Chen Y 2019 Adv. Mater. 31 1805970
[44] Hulm J K, Matthias B T and Long E A 1950 Phys. Rev. 79 885
[45] Lifshitz I and Peschanskii V 1959 Soviet Phys-JETP-USSR 8 875
[46] Abrikosov A A 1998 Phys. Rev. B 58 2788
[47] Abrikosov A A 2000 Europhys. Lett. 49 789
[48] Xu R, Husmann A, Rosenbaum T F, Saboungi M L and Littlewood P B 1997 Nature 390 57
[49] Wang C C, Liang C T, Jiang Y T, Chen Y F, Cooper N R, Simmons M Y and Ritchie D A 2007 Appl. Phys. Lett. 90 252106
[50] Khouri T, Zeitler U, Reichl C, Wegscheider W, Hussey N E, Wiedmann S and Maan J C 2016 Phys. Rev. Lett. 117 256601
[51] Ji Z, Ji W J, Xu J, Geng X Y and Zhang S T 2017 Sci. Adv. 3 e1701473
[52] Hu J S and Rosenbaum T F 2008 Nat. Mater. 7 697
[1] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[2] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[3] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[4] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[5] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[6] Anomalous magnetoresistance in detwinned EuFe2As2
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太). Chin. Phys. B, 2020, 29(7): 077402.
[7] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[8] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[9] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[10] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[11] Synthesis and magnetotransport properties of Bi2Se3 nanowires
Kang Zhang(张亢), Haiyang Pan(潘海洋), Zhongxia Wei(魏仲夏), Minhao Zhang(张敏昊), Fengqi Song(宋风麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(9): 096101.
[12] Large linear magnetoresistance in a new Dirac material BaMnBi2
Yi-Yan Wang(王义炎), Qiao-He Yu(郁巧鹤), Tian-Long Xia(夏天龙). Chin. Phys. B, 2016, 25(10): 107503.
[13] Effects of Si surficial structure on transport properties of La2/3Sr1/3MnO3 films
Xiao-Min Gu(顾晓敏), Wei Wang(王伟), Guo-Tai Zhou(周国泰), Kai-Ge Gao(高凯歌), Hong-Ling Cai(蔡宏灵), Feng-Ming Zhang(张凤鸣), Xiao-Shan Wu(吴小山). Chin. Phys. B, 2016, 25(10): 106701.
[14] Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes
Luping Liu(刘鲁萍), Qingfeng Zhan(詹清峰), Xin Rong(荣欣), Huali Yang(杨华礼), Yali Xie(谢亚丽), Xiaohua Tan(谭晓华), Run-wei Li(李润伟). Chin. Phys. B, 2016, 25(7): 077307.
[15] Perfect spin filtering controlled by an electric field in a bilayer graphene junction: Effect of layer-dependent exchange energy
Kitakorn Jatiyanon, I-Ming Tang, Bumned Soodchomshom. Chin. Phys. B, 2016, 25(7): 078104.
No Suggested Reading articles found!