Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087302    DOI: 10.1088/1674-1056/ac720e
RAPID COMMUNICATION Prev   Next  

Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation

Jiahao Yuan(袁嘉浩)1,2,†, Mengzhou Liao(廖梦舟)1,2,5,†, Zhiheng Huang(黄智恒)1,2, Jinpeng Tian(田金朋)1,2, Yanbang Chu(褚衍邦)1,2, Luojun Du(杜罗军)1, Wei Yang(杨威)1,2, Dongxia Shi(时东霞)1,2, Rong Yang(杨蓉)1,3,‡, and Guangyu Zhang(张广宇)1,2,4,§
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Semiconductors(College of Integrated Circuits), Hunan University, Changsha 410082, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
Abstract  Two-dimensional (2D) moiré materials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties. Although great progress has been achieved, the inability to precisely and reproducibly manipulate the twist angle hinders the further development of twistronics. Here, we demonstrated an atomic force microscope (AFM) tip manipulation method to control the interlayer twist angle of epitaxial MoS2/graphene heterostructure with an ultra-high accuracy better than 0.1°. Furthermore, conductive AFM and spectroscopic characterizations were conducted to show the effects of the twist angle on moiré pattern wavelength, phonons and excitons. Our work provides a technique to precisely control the twist angle of 2D moiré materials, enabling the possibility to establish the phase diagrams of moiré physics with twist angle.
Keywords:  AFM tip manipulation      MoS2/graphene heterostructure      twist angle      moiré      superlattice  
Received:  06 April 2022      Revised:  11 May 2022      Accepted manuscript online:  23 May 2022
PACS:  73.43.Fj (Novel experimental methods; measurements)  
  73.21.Cd (Superlattices)  
  73.20.At (Surface states, band structure, electron density of states)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the Natioanl Natural Science Foundation of China (Grant Nos. 62122084, 12074412, 61888102, and 11834017).
Corresponding Authors:  Rong Yang, Guangyu Zhang     E-mail:  ryang@iphy.ac.cn;gyzhang@iphy.ac.cn

Cite this article: 

Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇) Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation 2022 Chin. Phys. B 31 087302

[1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 461
[2] He F, Zhou Y, Ye Z, Cho S H, Jeong J, Meng X and Wang Y 2021 ACS Nano 15 5944
[3] Du L J, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y G, Lau C N and Sun Z P 2021 Nat. Rev. Phys. 3 193
[4] Andrei E Y and MacDonald A H 2020 Nat. Mater. 19 1265
[5] Tang K W and Qi W H 2020 Adv. Funct. Mater. 30 20
[6] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[7] Tran K, Moody G, Wu F, et al. 2019 Nature 567 71
[8] Liu J P and Dai X 2020 npj Comput. Mater. 6 10
[9] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653
[10] Kazmierczak N P, Van Winkle M, Ophus C, Bustillo K C, Carr S, Brown H G, Ciston J, Taniguchi T, Watanabe K and Bediako D K 2021 Nat. Mater. 20 956
[11] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C and Lombardo A 2018 Nat. Commun. 9 5387
[12] Lau C N, Bockrath M W, Mak K F and Zhang F 2022 Nature 602 41
[13] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G 2013 Nat. Mater. 12 792
[14] Yu H, Yang Z, Du L, Zhang J, Shi J, Chen W, Chen P, Liao M, Zhao J, Meng J, Wang G, Zhu J, Yang R, Shi D, Gu L and Zhang G 2017 Small 13 1603005
[15] Liao M, Nicolini P, Du L, Yuan J, Wang S, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D and Zhang G 2022 Nat. Mater. 21 47
[16] Yuan J, Yang R and Zhang G 2021 Nanotechnology 33 102002
[17] Wang D, Chen G, Li C, et al. 2016 Phys. Rev. Lett. 116 126101
[18] Du L J, Yu H, Liao M Z, Wang S P, Xie L, Lu X B, Zhu J Q, Li N, Shen C, Chen P, Yang R, Shi D X and Zhang G Y 2017 Appl. Phys. Lett. 111 263106
[19] Ribeiro-Palau R, Zhang C J, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Science 361 690
[20] Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R and Hone J 2019 Nat. Nanotechnol. 14 1029
[21] Hu C, Wu T, Huang X, Dong Y, Chen J, Zhang Z, Lyu B, Ma S, Watanabe K, Taniguchi T, Xie G, Li X, Liang Q and Shi Z 2022 Sci. Rep. 12 204
[22] Higgins M J, Proksch R, Sader J E, Polcik M, Mc Endoo S, Cleveland J P and Jarvis S P 2006 Review of Scientific Instruments 77 013701
[23] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[24] Ferrari A C 2007 Solid State Commun. 143 47
[25] Hod O, Meyer E, Zheng Q and Urbakh M 2018 Nature 563 485
[26] Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
[27] Conley H J, Wang B, Ziegler J I, Haglund R F, Jr., Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[28] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T and Urbaszek B 2013 Phys. Rev. B 88 121301
[29] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643
[30] Ebnonnasir A, Narayanan B, Kodambaka S and Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[9] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[10] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[11] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[12] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[13] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[14] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[15] An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水). Chin. Phys. B, 2020, 29(7): 070701.
No Suggested Reading articles found!