|
|
Extended phase diagram of La1-xCaxMnO3 by interfacial engineering |
Kexuan Zhang(张可璇)1, Lili Qu(屈莉莉)1, Feng Jin(金锋)1, Guanyin Gao(高关胤)1, Enda Hua(华恩达)1, Zixun Zhang(张子璕)1, Lingfei Wang(王凌飞)1,†, and Wenbin Wu(吴文彬)1,2,‡ |
1 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China; 2 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract The interfacial enhanced ferromagnetism in maganite/ruthenate system is regarded as a promising path to broaden the potential of oxide-based electronic device applications. Here, we systematically studied the physical properties of LaLa1-xCaxMnO3/SrRuO3 superlattices and compared them with the LaLa1-xCaxMnO3 thin films and bulk compounds. The LaLa1-xCaxMnO3/SrRuO3 superlattices exhibit significant enhancement of Curie temperature (TC) beyond the corresponding thin films and bulks. Based on these results, we constructed an extended phase diagram of LaLa1-xCaxMnO3 under interfacial engineering. We considered the interfacial charge transfer and structural proximity effects as the origin of the interface-induced high TC. The structural characterizations revealed a pronounced increase of B-O-B bond angle, which could be the main driving force for the high TC in the superlattices. Our work inspires a deeper understanding of the collective effects of interfacial charge transfer and structural proximity on the physical properties of oxide heterostructures.
|
Received: 02 April 2021
Revised: 05 May 2021
Accepted manuscript online: 12 May 2021
|
PACS:
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
68.65.Cd
|
(Superlattices)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.25.Dk
|
(Orbital, charge, and other orders, including coupling of these orders)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401003, 2017YFA0403502, and 2020YFA0309100), the National Natural Science Foundation of China (Grant Nos. 11974326, 12074365, 11804342, U2032218, and 51872278), the Fundamental Research Funds for the Central Universities, China (Grant Nos. WK2030000035 and WK2340000102), and Hefei Science Center of Chinese Academy of Sciences (Grant No. 2020HSC-UE014). |
Corresponding Authors:
Lingfei Wang, Wenbin Wu
E-mail: wanglf@ustc.edu.cn;wuwb@ustc.edu.cn
|
Cite this article:
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬) Extended phase diagram of La1-xCaxMnO3 by interfacial engineering 2021 Chin. Phys. B 30 126802
|
[1] Chakhalian J, Freeland J W, Millis A J, Panagopoulos C and Rondinelli J M 2014 Rev. Mod. Phys. 86 1189 [2] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103 [3] Rondinelli J M and Spaldin N A 2011 Adv. Mater. 23 3363 [4] Gao, Y.; Wang J, Wu L, Bao S, Shen Y, Lin Y and Nan C 2015 Sci. China Mater. 58 302 [5] Moon E J, Balachandran P V, Kirby B J, Keavney D J, Sichel-Tissot R J, Schleputz C M, Karapetrova E, Cheng X M, Rondinelli J M and May S J 2014 Nano. Lett. 14 2509 [6] Zhong Z and Hansmann P 2017 Phys. Rev. X 7 011023 [7] Grisolia M N, Varignon J, Sanchez-Santolino G, Arora A, Valencia S, Varela M, Abrudan R, Weschke E, Schierle E, Rault J E, Rueff J P, Barthelemy A, Santamaria J and Bibes M 2016 Nat. Phys. 12 484 [8] Chen H and Millis A 2017 J. Phys. Condens. Matter. 29 243001 [9] Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W and Bhattacharya A 2013 Phys. Rev. B 88 144411 [10] Shiomi Y, Handa Y, Kikkawa T and Saitoh E 2015 Phys. Rev. B 92 024418 [11] Ziese M, Bern F, Pippel E, Hesse D and Vrejoiu I 2012 Nano Lett. 12 4276 [12] He C, Grutter A J, Gu M, Browning N D, Takamura Y, Kirby B J, Borchers J A, Kim J W, Fitzsimmons M R, Zhai X, Mehta V V, Wong F J and Suzuki Y 2012 Phys. Rev. Lett. 109 197202 [13] Chen B B, Chen P F, Xu H R, Jin F, Guo Z, Lan D, Wan S Y, Gao G Y, Chen F and Wu W B 2016 ACS Appl. Mater. Interfaces 8 34924 [14] Chen B B, Chen P F, Xu H R, Tan X L, Jin F, Guo Z, Zhi B W and Wu W B 2014 Appl. Phys. Lett. 104 242416 [15] Chen P F, Chen B B, Tan X L, Xu H R, Xuan X F, Guo Z, Jin F and Wu W B 2013 Appl. Phys. Lett. 103 262402 [16] Lan D, Chen B B, Qu L L, Jin F, Guo Z, Xu L Q, Zhang K X, Gao G Y, Chen F, Jin S W, Wang L F and Wu W B 2019 ACS Appl. Mater. Interfaces 11 10399 [17] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1 [18] Yunoki S, Hotta T and Dagotto E 2000 Phys. Rev. Lett. 84 3714 [19] Gennes P G 1960 Phys. Rev. 118 141 [20] Huijben M, Koster G, Liao Z L and Rijnders G 2017 Appl. Phys. Rev. 4 041103 [21] Tan X L, Gao G Y, Chen P F, Xu H R, Zhi B W, Jin F, Chen F and Wu W B 2014 J. Appl. Phys. 116 203706 [22] Dai P C, Fernandez-Baca J A, Wakabayashi N, Plummer E W, Tomioka Y and Tokura Y 2000 Phys. Rev. Lett. 85 2553 [23] Likodimos V and Pissas M 2006 Phys. Rev. B 73 214417 [24] Bose E, Karmakar S, Chaudhuri B K and Pal S 2008 Solid State Commun. 145 149 [25] Wang L F, Tan X L, Chen P F, Zhi B W, Sun Z G, Huang Z, Gao G Y and Wu W B 2013 Appl. Phys. Lett. 103 072407 [26] Tao J, Niebieskikwiat D, Varela M, Luo W, Schofield M A, Zhu Y, Salamon M B, Zuo J M, Pantelides S T and Pennycook S J 2009 Phys. Rev. Lett. 103 097202 [27] Radaelli P. G, Cox D E, Marezio M and Cheong S W 1997 Phys. Rev. B 55 3015 [28] Huang Q, Lynn J W, Erwin R W, Santoro A, Dender D C, Smolyaninova V N, Ghosh K and Greene R L 2000 Phys. Rev. B 61 8895 [29] Cao G, McCall S, Shepard M and Crow J E 1997 Phys. Rev. B 56 321 [30] Chang Y J, Kim C H, Phark S H, Kim Y S, Yu J and Noh T W 2009 Phys. Rev. Lett. 103 057201 [31] Huang Z, Wang L F, Tan X L, Chen P F, Gao G Y and Wu W B 2010 J. Appl. Phys. 108 083912 [32] Zhang H R, Liu Y B, Wang S H, Hong D S, Wu W B and Sun J R 2016 Chin. Phys. B 25 077306 [33] Chang S H, Chang Y J, Jang S Y., Jeong D W, Jung C U, Kim Y J, Chung J S and Noh T W 2011 Phys. Rev. B 84 104101 [34] Masrour R and Jabar A 2016 Chin. Phys. B 25 107502 [35] Berndt L M, Balbarin V and Suzuki Y 2000 Appl. Phys. Lett. 77 2903 [36] Gao G Y, Yin Z Z, Huang Z, Jin S W and Wu W B 2008 J. Phys. D:Appl. Phys. 41 152001 [37] Algarabel P A, De Teresa J M, Blasco J, Ibarra M R, Kapusta C, Sikora M, Zajac D, Riedi P C and Ritter C 2003 Phys. Rev. B 67 134402 [38] Huang Z, Wang L F, Chen P F, Gao G Y, Tan X L, Zhi B W, Xuan X F and Wu W B 2012 Phys. Rev. B 86 014410 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|