INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy |
Fang-Qi Lin(林芳祁)1,2, Nong Li(李农)1,2, Wen-Guang Zhou(周文广)1,2, Jun-Kai Jiang(蒋俊锴)1,2, Fa-Ran Chang(常发冉)1, Yong Li(李勇)1, Su-Ning Cui(崔素宁)1,2, Wei-Qiang Chen(陈伟强)1,2, Dong-Wei Jiang(蒋洞微)1,2,3, Hong-Yue Hao(郝宏玥)1,2,3, Guo-Wei Wang(王国伟)1,2,3,†, Ying-Qiang Xu(徐应强)1,2,3,‡, and Zhi-Chuan Niu(牛智川)1,2,3,§ |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract By optimizing the V/III beam-equivalent pressure ratio, a high-quality InAs/GaSb type-II superlattice material for the long-wavelength infrared (LWIR) range is achieved by molecular beam epitaxy (MBE). High-resolution x-ray diffraction (HRXRD), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectrometer are used to characterize the material growth quality. The results show that the full width at half maximum (FWHM) of the superlattice zero-order diffraction peak, the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks, and the surface roughness get the best results when the beam-equivalent pressure (BEP) ratio reaches the optimal value, which are 28 arcsec, 13 arcsec, and 1.63 Å, respectively. The intensity of the zero-order diffraction peak is strongest at the optimal value. The relative spectral response of the LWIR detector shows that it exhibits a 100% cut-off wavelength of 12.6 μm at 77 K. High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.
|
Received: 29 December 2021
Revised: 03 March 2022
Accepted manuscript online: 28 March 2022
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
68.65.Cd
|
(Superlattices)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
Fund: Project supported by the National Key Technology R&D Program of China (Grant Nos. 2018YFA0209104, 2018YFA0209102, 2019YFA0705203, and 2019YFA070104), the National Natural Science Foundation of China (Grant Nos. 61790581, 61274013, and 62004189), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB22). |
Corresponding Authors:
Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu
E-mail: wangguowei@semi.c.cn;yingqxu@semi.ac.cn;zcniu@semi.ac.cn
|
Cite this article:
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川) Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy 2022 Chin. Phys. B 31 098504
|
[1] Sai Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651 [2] Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545 [3] Tennant W E, Lee D, Zandian M, Piquette E and Carmody M 2008 J. Electronic Mater. 37 1406 [4] Lee D, Carmody M, Piquette E, Dreiske P, Chen A, Yulius A, Edwall D, Bhargava S, Zandian M and Tennant W E 2016 J. Electronic Mater. 45 4587 [5] Reine M B, Sood A K and Tredwell T J 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 201-311 [6] Kruse P W 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 1-20 [7] Chen X, Zhang W and Ye Z 2018 Infrared Technology and Applications XLIV p. 1 [8] Hirsch H E, Liang S C and White A G 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 21-45 [9] Micklethwaite W F H 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 47-119 [10] Krishnamurthy S B M A, Robinson H and Sher A 2006 J. Electronic Mater. 35 1399 [11] Petersen P E 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 121-155 [12] Angeloscotty G, James B and Amanda G 2006 J. Electronic Mater. 35 1403 [13] Rogalski A 2011 Infrared Phys. Techn. 54 136 [14] Liao K S L Z F, Wang C, Li L, Zhou X H, Li N and Dai N 2016 J. Infrared Millim. Waves 35 0037 [15] Hubert J M R, Nicholas R S, Francis P, Timothy D P, Marc L, Mario L, Ghislain B, Martin P, Danick A and Philippe L 1996 Micromachined Devices and Components II pp. 111-121 [16] Zhou J, Raihan Miah M A, Yu Y, Zhang A C, Zeng Z, Damle S, Niaz I A, Zhang Y and Lo Y H 2019 Opt. Express 27 37056 [17] Andresen B F, Rogalski A, Fulop G F and Norton P R 2006 Proc. SPIE 6206 620601 [18] Rogalski A, Martyniuk P and Kopytko M 2017 Appl. Phys. Rev. 4 031304 [19] Rogalski A, Martyniuk P and Kopytko M 2019 Prog. Quantum Electron. 68 100228 [20] Gautam N, Myers S, Barve A V, Klein B, Smith E P, Rhiger D R, Dawson L R and Krishna S 2012 Appl. Phys. Lett. 101 021106 [21] Deng G, Yang W, Zhao P and Zhang Y 2020 Appl. Phys. Lett. 116 031104 [22] Gunapala S D, Ting D and Rafol S, et al. 2021 Infrared Technology and Applications XLVII p. 117410 [23] Youngdale E R, Meyer J R, Hoffman C A, Bartoli F J, Grein C H, Young P M, Ehrenreich H, Miles R H and Chow D H 1994 Appl. Phys. Lett. 64 3160 [24] Wei Y and Razeghi M 2004 Phys. Rev. B 69 085316 [25] Chen X, Cao X, Zhang L, Zhang L and He Y 2016 Opt. Quantum Electron. 48 0375 [26] Binhminh N, Guanxi C, Minhanh H and Razeghi M 2011 IEEE J. Quantum Electron. 47 686 [27] Cui S N, Jiang D W, Sun J, Jia Q X, Li N, Zhang X, Li Y, Chang F R, Wang G W, Xu Y Q and Niu Z C 2020 Chin. Phys. B 29 048502 [28] Hood A, Razeghi M, Aifer E H and Brown G J 2005 Appl. Phys. Lett. 87 151113 [29] Sullivan G J, Ikhlassi A, Bergman J, DeWames R E, Waldrop J R, Grein C, Flatteé M, Mahalingam K, Yang H, Zhong M and Weimer M 2005 J. Vacuum Sci. Techn. 23 1144 [30] Jiang D, Xiang W, Guo F, Hao H, Han X, Li X, Wang G, Xu Y, Yu Q and Niu Z 2016 Appl. Phys. Lett. 108 121110 [31] Chow D H, Miles R H and Hunter A T 1992 J. Vacuum Sci. Techn. B 10 888 [32] Liu Y F, Zhang C J, Wang X B, Wu J and Huang L 2021 Infrared Phys. Techn. 113 103573 [33] Nguyen B M, Hoffman D, Delaunay P Y and Razeghi M 2007 Appl. Phys. Lett. 91 163511 [34] Klipstein P C, Benny Y, Gliksman S, Glozman A, Hojman E, Klin O, Langof L, Lukomsky I, Marderfeld I, Nitzani M, Snapi N and Weiss E 2019 Infrared Phys. Techn. 96 155 [35] Bracker A S, Yang M J, Bennett B R, Culbertson J C and Moore W J 2000 J. Crystal Growth 220 384 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|