Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098504    DOI: 10.1088/1674-1056/ac615d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy

Fang-Qi Lin(林芳祁)1,2, Nong Li(李农)1,2, Wen-Guang Zhou(周文广)1,2, Jun-Kai Jiang(蒋俊锴)1,2, Fa-Ran Chang(常发冉)1, Yong Li(李勇)1, Su-Ning Cui(崔素宁)1,2, Wei-Qiang Chen(陈伟强)1,2, Dong-Wei Jiang(蒋洞微)1,2,3, Hong-Yue Hao(郝宏玥)1,2,3, Guo-Wei Wang(王国伟)1,2,3,†, Ying-Qiang Xu(徐应强)1,2,3,‡, and Zhi-Chuan Niu(牛智川)1,2,3,§
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  By optimizing the V/III beam-equivalent pressure ratio, a high-quality InAs/GaSb type-II superlattice material for the long-wavelength infrared (LWIR) range is achieved by molecular beam epitaxy (MBE). High-resolution x-ray diffraction (HRXRD), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectrometer are used to characterize the material growth quality. The results show that the full width at half maximum (FWHM) of the superlattice zero-order diffraction peak, the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks, and the surface roughness get the best results when the beam-equivalent pressure (BEP) ratio reaches the optimal value, which are 28 arcsec, 13 arcsec, and 1.63 Å, respectively. The intensity of the zero-order diffraction peak is strongest at the optimal value. The relative spectral response of the LWIR detector shows that it exhibits a 100% cut-off wavelength of 12.6 μm at 77 K. High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.
Keywords:  type-II superlattice      InAs/GaSb      long-wavelength      strain-balanced  
Received:  29 December 2021      Revised:  03 March 2022      Accepted manuscript online:  28 March 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.65.Cd (Superlattices)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the National Key Technology R&D Program of China (Grant Nos. 2018YFA0209104, 2018YFA0209102, 2019YFA0705203, and 2019YFA070104), the National Natural Science Foundation of China (Grant Nos. 61790581, 61274013, and 62004189), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB22).
Corresponding Authors:  Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu     E-mail:  wangguowei@semi.c.cn;yingqxu@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川) Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy 2022 Chin. Phys. B 31 098504

[1] Sai Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651
[2] Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545
[3] Tennant W E, Lee D, Zandian M, Piquette E and Carmody M 2008 J. Electronic Mater. 37 1406
[4] Lee D, Carmody M, Piquette E, Dreiske P, Chen A, Yulius A, Edwall D, Bhargava S, Zandian M and Tennant W E 2016 J. Electronic Mater. 45 4587
[5] Reine M B, Sood A K and Tredwell T J 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 201-311
[6] Kruse P W 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 1-20
[7] Chen X, Zhang W and Ye Z 2018 Infrared Technology and Applications XLIV p. 1
[8] Hirsch H E, Liang S C and White A G 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 21-45
[9] Micklethwaite W F H 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 47-119
[10] Krishnamurthy S B M A, Robinson H and Sher A 2006 J. Electronic Mater. 35 1399
[11] Petersen P E 1981 Mercury Cadmium Telluride (Amsterdam:Elsevier) pp. 121-155
[12] Angeloscotty G, James B and Amanda G 2006 J. Electronic Mater. 35 1403
[13] Rogalski A 2011 Infrared Phys. Techn. 54 136
[14] Liao K S L Z F, Wang C, Li L, Zhou X H, Li N and Dai N 2016 J. Infrared Millim. Waves 35 0037
[15] Hubert J M R, Nicholas R S, Francis P, Timothy D P, Marc L, Mario L, Ghislain B, Martin P, Danick A and Philippe L 1996 Micromachined Devices and Components II pp. 111-121
[16] Zhou J, Raihan Miah M A, Yu Y, Zhang A C, Zeng Z, Damle S, Niaz I A, Zhang Y and Lo Y H 2019 Opt. Express 27 37056
[17] Andresen B F, Rogalski A, Fulop G F and Norton P R 2006 Proc. SPIE 6206 620601
[18] Rogalski A, Martyniuk P and Kopytko M 2017 Appl. Phys. Rev. 4 031304
[19] Rogalski A, Martyniuk P and Kopytko M 2019 Prog. Quantum Electron. 68 100228
[20] Gautam N, Myers S, Barve A V, Klein B, Smith E P, Rhiger D R, Dawson L R and Krishna S 2012 Appl. Phys. Lett. 101 021106
[21] Deng G, Yang W, Zhao P and Zhang Y 2020 Appl. Phys. Lett. 116 031104
[22] Gunapala S D, Ting D and Rafol S, et al. 2021 Infrared Technology and Applications XLVII p. 117410
[23] Youngdale E R, Meyer J R, Hoffman C A, Bartoli F J, Grein C H, Young P M, Ehrenreich H, Miles R H and Chow D H 1994 Appl. Phys. Lett. 64 3160
[24] Wei Y and Razeghi M 2004 Phys. Rev. B 69 085316
[25] Chen X, Cao X, Zhang L, Zhang L and He Y 2016 Opt. Quantum Electron. 48 0375
[26] Binhminh N, Guanxi C, Minhanh H and Razeghi M 2011 IEEE J. Quantum Electron. 47 686
[27] Cui S N, Jiang D W, Sun J, Jia Q X, Li N, Zhang X, Li Y, Chang F R, Wang G W, Xu Y Q and Niu Z C 2020 Chin. Phys. B 29 048502
[28] Hood A, Razeghi M, Aifer E H and Brown G J 2005 Appl. Phys. Lett. 87 151113
[29] Sullivan G J, Ikhlassi A, Bergman J, DeWames R E, Waldrop J R, Grein C, Flatteé M, Mahalingam K, Yang H, Zhong M and Weimer M 2005 J. Vacuum Sci. Techn. 23 1144
[30] Jiang D, Xiang W, Guo F, Hao H, Han X, Li X, Wang G, Xu Y, Yu Q and Niu Z 2016 Appl. Phys. Lett. 108 121110
[31] Chow D H, Miles R H and Hunter A T 1992 J. Vacuum Sci. Techn. B 10 888
[32] Liu Y F, Zhang C J, Wang X B, Wu J and Huang L 2021 Infrared Phys. Techn. 113 103573
[33] Nguyen B M, Hoffman D, Delaunay P Y and Razeghi M 2007 Appl. Phys. Lett. 91 163511
[34] Klipstein P C, Benny Y, Gliksman S, Glozman A, Hojman E, Klin O, Langof L, Lukomsky I, Marderfeld I, Nitzani M, Snapi N and Weiss E 2019 Infrared Phys. Techn. 96 155
[35] Bracker A S, Yang M J, Bennett B R, Culbertson J C and Moore W J 2000 J. Crystal Growth 220 384
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[3] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[4] Investigation of active-region doping on InAs/GaSb long wave infrared detectors
Su-Ning Cui(崔素宁), Dong-Wei Jiang(蒋洞微), Ju Sun(孙矩), Qing-Xuan Jia(贾庆轩), Nong Li(李农), Xuan Zhang(张璇), Yong Li(李勇), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(4): 048502.
[5] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[6] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[7] Development of long-wavelength infrared detector and its space-based application requirements
Junku Liu(刘军库), Lin Xiao(肖林), Yang Liu(刘阳), Longfei Cao(曹龙飞), Zhengkun Shen(申正坤). Chin. Phys. B, 2019, 28(2): 028504.
[8] Performance of dual-band short- or mid-wavelength infrared photodetectors based on InGaAsSb bulk materials and InAs/GaSb superlattices
Yao-yao Sun(孙姚耀), Yue-xi Lv(吕粤希), Xi Han(韩玺), Chun-yan Guo(郭春妍), Zhi Jiang(蒋志), Hong-yue Hao(郝宏玥), Dong-wei Jiang(蒋洞微), Guo-wei Wang(王国伟), Ying-qiang Xu(徐应强), Zhi-chuan Niu(牛智川). Chin. Phys. B, 2017, 26(9): 098506.
[9] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[10] Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-II InAs/GaSb superlattice
Xi Han(韩玺), Wei Xiang(向伟), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Yao-Yao Sun(孙姚耀), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(1): 018505.
[11] Effect of compensation doping on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattice photodetectors
Wang Yong-Bin (王永宾), Xu Yun (徐云), Zhang Yu (张宇), Yu Xiu (迂修), Song Guo-Feng (宋国峰), Chen Liang-Hui (陈良惠). Chin. Phys. B, 2011, 20(6): 067302.
No Suggested Reading articles found!