Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070701    DOI: 10.1088/1674-1056/ab892a
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
SPECIAL TOPIC—Physics in neuromorphic devices Prev   Next  

An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing

Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水)
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information,Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Phase-change material (PCM) is generating widespread interest as a new candidate for artificial synapses in bio-inspired computer systems. However, the amorphization process of PCM devices tends to be abrupt, unlike continuous synaptic depression. The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications. Here, we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process. Our devices feature low-power consumption operation and potential high-density integration, which can effectively simulate biological synaptic characteristics. The programming energy can be further reduced by properly selecting the resistance range and operating method. The fabricated devices are implemented in both artificial neural networks (ANN) and convolutional neural network (CNN) simulations, demonstrating high accuracy in brain-like pattern recognition.
Keywords:  superlattice-like      phase-change material      artificial synapse      low-power consumption  
Received:  27 February 2020      Revised:  11 April 2020      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  47.20.Hw (Morphological instability; phase changes)  
  83.10.Tv (Structural and phase changes)  
Fund: Project supported by the National Science and Technology Major Project of China (Grant No. 2017ZX02301007-002), the National Key R&D Plan of China (Grant No. 2017YFB0701701), and the National Natural Science Foundation of China (Grant Nos. 61774068 and 51772113). The authors acknowledge the support from Hubei Key Laboratory of Advanced Memories & Hubei Engineering Research Center on Microelectronics.
Corresponding Authors:  Hao Tong, Ming Xu     E-mail:;

Cite this article: 

Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水) An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing 2020 Chin. Phys. B 29 070701

[1] Yao P, Wu H Q, Gao B, Eryilmaz S B and Qian H 2017 Nat. Commun. 8 15199
[2] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[3] Chi-Sang P and Kuan Z 2011 Frontiers in Neuroscience 5 108
[4] Yu S M 2018 Proc. IEEE 106 260
[5] Irem B, Manuel L G, R N S, Timoleon M, Thomas P, Tomas T, Bipin R, Yusuf L, Abu S and Evangelos E 2018 Nat. Commun. 9 1
[6] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C and Nakamura Y 2014 Science 345 668
[7] Han S, Liu X Y, Mao H Z, Pu J, Pedram A, Horowitz M A and Dally W J 2016 ACM SIGARCH Comput. Architecture News 44 243
[8] Sebastian A, Le Gallo M, Burr G W, Kim S, BrightSky M and Eleftheriou E 2018 J. Appl. Phys. 124 111101
[9] Papandreou N, Pantazi A, Sebastian A, Eleftheriou E, Breitwisch M, Lam C and Pozidis H 2010 Solid-State Electron. 54 991
[10] Wang Z R, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P and Li Z Y 2017 Nat. Mater. 16 101
[11] Lin C, Tian-Yu W, yawei d, Ming-Yang C, Hao Z, Qing-Qing S, Shi-Jin D, Peng Z, Leon C and Wei Z D 2018 Nanoscale 10 15826
[12] Ambrogio S, Balatti S, Milo V, Carboni R, Wang Z, Calderoni A, Ramaswamy N and Ielmini D 2016 IEEE Symposium on VLSI Technology, June 14-16, 2016, Honolulu, HI, USA, pp. 1-2
[13] Yang Y C, Yin M H, Yu Z Z, Wang Z W, Zhang T, Cai Y M, Lu W D and Huang R 2017 Adv. Electron. Mater. 3 1700032
[14] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Letters 10 1297
[15] Su S, Jian X C, Wang F, Han Y M, Tian Y X, Wang X Y, Zhang H Z and Zhang K L 2016 Chin. Phys. B 25 107302
[16] Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J and Qian H 2020 Nature 577 641
[17] Wang S, He C, Tang J, Yang R, Shi D and Zhang G 2019 Chin. Phys. B 28 017304
[18] Burr G, Narayanan P, Shelby R, Sidler S, Boybat I, di Nolfo C and Leblebici Y 2015 IEEE International Electron Devices Meeting (IEDM), December 7-9, 2015, Washington, DC, USA, pp. 4.4.1-4.4.4
[19] Choi S, Tan S H, Li Z, Kim Y, Choi C, Chen P Y, Yeon H, Yu S and Kim J 2018 Nat. Mater. 17 335
[20] Xie Y J, Kim W, Kim Y, Kim S, Gonsalves J, BrightSky M, Lam C, Zhu Y and Cha J J 2018 Adv. Mater. 30 1705587
[21] Cheng Z G, Carlos R, Nathan Y, David W C, P P W H and Harish B 2018 Adv. Mater. 30 1802435
[22] Tuma T, Pantazi A, Le Gallo M, Sebastian A and Eleftheriou E 2016 Nat. Nanotechnol. 11 693
[23] Sebastian A, Le Gallo M and Krebs D 2014 Nat. Commun. 5 4314
[24] Sidler S, Pantazi A, Wózniak S, Leblebici Y and Eleftheriou E 2017 International Conference on Artificial Neural Networks (ICANN), September 11-14, 2017, Alghero, Sardinia, Italy, pp. 281-288
[25] Ambrogio S, Gallot M, Spoon K, Tsai H, Mackin C, Wesson M, Kariyappa S, Narayanan P, Liu C C and Kumar A 2019 IEEE International Electron Devices Meeting (IEDM), December 9-11, 2019, San Francisco, USA, pp. 6.1.1-6.1.4
[26] Piveteau C, Le Gallo M, Khaddam-Aljameh R and Sebastian A 2019 IEEE 11th International Memory Workshop (IMW), May 12-15, 2019, Monterey, CA, USA pp. 1-4
[27] Kim W, Bruce R, Masuda T, Fraczak G, Gong N, Adusumilli P, Ambrogio S, Tsai H, Bruley J and Han J P 2019 Symposium on VLSI Technology, June 9-14, 2019, Kyoto, Japan pp. T66-T67
[28] Tsai H, Ambrogio S, Mackin C, Narayanan P, Shelby R, Rocki K, Chen A and Burr G 2019 Symposium on VLSI Technology, June 9-14, 2019, Kyoto, Japan pp. T82-T83
[29] Zhou X L, Xia M J, Rao F, Wu L C and Zhang S B 2014 Acs Appl. Mater Interfaces 6 14207
[30] Burr G W, Kurdi B N, Scott J C, Lam C H, Gopalakrishnan K and Shenoy R S 2008 IBM J. Res. & Dev. 52 449
[31] Bichler O, Suri M, Querlioz D, Vuillaume D, DeSalvo B and Gamrat C 2012 IEEE Trans. Electron. Devices 59 2206
[32] Burr G W, Shelby R M, Sidler S, Di Nolfo C, Jang J, Boybat I, Shenoy R S, Narayanan P, Virwani K and Giacometti E U 2015 IEEE Trans. Electron. Devices 62 3498
[33] Stefano A, Pritish N, Hsinyu T, M S R, Irem B, Carmelo d N, Severin S, Massimo G, Martina B and P F N C 2018 Nature 558 60
[34] Simpson R E, Fons P, Kolobov A V, Fukaya T, Krbal M, Yagi T and Tominaga J 2011 Nat. Nanotechnol. 6 501
[35] Kalikka J, Zhou X, Dilcher E, Wall S, Li J and Simpson R E 2016 Nat. Commun. 7 11983
[36] Zhou X L, Kalikka J, Ji X L, Wu L C, Song Z T and Simpson R E 2016 Adv. Mater. 28 3007
[37] Momand J, Wang R, Boschker J E, Verheijen M A, Calarco R and Kooi B J 2015 Nanoscale 7 19136
[38] Zhang W, Thiess A, Zalden P, Zeller R, Dederichs P H, Raty J Y, Wuttig M, Blügel S and Mazzarello R 2012 Nat. Mater. 11 952
[39] Xian B L, Nian K C, Xue P W and Hong B S 2018 Adv. Funct. Mater. 28 1803380
[40] Rummelhart D E, Hinton G E and Williams R J 1986 Nature 323 533
[41] Krizhevsky A, Sutskever I and Hinton G 2012 Advances in neural information processing systems 25 1097
[42] Cireşan D, Meier U and Schmidhuber J 2012 IEEE conference on computer vision and pattern recognition, June 16-21, 2012, Providence, RI, USA p. 3642
[43] Simard P, Steinkraus D and Platt J C 2003 International Conference on Document Analysis and Recognition, August 6-6, 2003, Edinburgh, UK, UK p. 3
[44] Ranzato M A, Poultney C, Chopra S and Lecun Y 2007 Advances in Neural Information Processing Systems (Boston: MIT Press) p. 1137
[45] Tong H, Miao X S, Cheng X M, Wang H, Zhang L, Sun J J, Tong F and Wang J H 2011 Appl. Phys. Lett. 98 101904
[46] Kuzum D, Jeyasingh R G D, Yu S and Wong H S P 2012 IEEE Trans. Electron. Devices 59 3489
[47] Kuzum D, Jeyasingh R G D, Lee B and Wong H S P 2012 Nano Lett. 12 2179
[48] Kang D H, Jun H G, Ryoo K C, Jeong H and Sohn H 2015 Neurocomputing 155 153
[1] Design of broadband achromatic metasurface device based on phase-change material Ge2Sb2Te5
Shuyuan Lv(吕淑媛), Xinhui Li(李新慧), Wenfeng Luo(罗文峰), and Jie Jia(贾洁). Chin. Phys. B, 2022, 31(12): 124206.
[2] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[3] Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage
Bo Liu(刘波), Tao Wei(魏涛), Jing Hu(胡敬), Wanfei Li(李宛飞), Yun Ling(凌云), Qianqian Liu(刘倩倩), Miao Cheng(程淼), and Zhitang Song(宋志棠). Chin. Phys. B, 2021, 30(5): 058504.
[4] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[5] Recent progress in optoelectronic neuromorphic devices
Yan-Bo Guo(郭延博), Li-Qiang Zhu(竺立强). Chin. Phys. B, 2020, 29(7): 078502.
[6] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[7] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[8] Resistive switching characteristic and uniformity of low-power HfOx-based resistive random access memory with the BN insertion layer
Shuai Su(苏帅), Xiao-Chuan Jian(鉴肖川), Fang Wang(王芳), Ye-Mei Han(韩叶梅), Yu-Xian Tian(田雨仙), Xiao-Yang Wang(王晓旸), Hong-Zhi Zhang(张宏智), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2016, 25(10): 107302.
No Suggested Reading articles found!