INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging |
Zhi-Li Wang(王志立)1,†, Zi-Han Chen(陈子涵)1, Yao Gu(顾瑶)1, Heng Chen(陈恒)1, and Xin Ge(葛昕)2 |
1 Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230009, China; 2 Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518067, China |
|
|
Abstract X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years. X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phase-stepping data. The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position. However, stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition. Previous studies have shown that those influences introduce errors in the acquired phase-stepping data, which cause obvious moiré artifacts in the retrieved refraction image. This work investigates moiré artifacts in x-ray dark-field imaging as a result of flux fluctuations. For the retrieved mean intensity, amplitude, visibility and dark-field images, the dependence of moiré artifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion. Results of synchrotron radiation experiments verify the validity of the derived analytical formulas. The spatial frequency characteristics of moiré artifacts are analyzed and compared to those induced by phase-stepping errors. It illustrates that moiré artifacts can be estimated by a weighted mean of flux fluctuation factors, with the weighting factors dependent on the moiré phase and different greatly for each retrieved image. Furthermore, moiré artifacts can even be affected by object's features not displayed in the particular contrast. These results can be used to interpret images correctly, identify sources of moiré artifacts, and develop dedicated algorithms to remove moiré artifacts in the retrieved multi-contrast images.
|
Received: 23 June 2022
Revised: 03 September 2022
Accepted manuscript online: 23 September 2022
|
|
Fund: Project supported by the Natural Science Foundation of China (Grant Nos. U1532113, 11475170, and 11905041), Fundamental Research Funds for the Central Universities (Grant No. PA2020GDKC0024), and Anhui Provincial Natural Science Foundation (Grant No. 2208085MA18). |
Corresponding Authors:
Zhi-Li Wang
E-mail: dywangzl@hfut.edu.cn
|
Cite this article:
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕) Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging 2023 Chin. Phys. B 32 038704
|
[1] Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P and Ziegler E 2005 Opt. Express 13 6296 [2] Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258 [3] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann Ch, Grünzweig C and David C 2008 Nat. Mater. 7 134 [4] Donath T, Chabior M, Pfeiffer F, Bunk O, Reznikova E, Mohr J, Hempel E, Popescu S, Hoheisel M, Schuster M, Baumann J and David C 2009 J. Appl. Phys. 106 054703 [5] Momose A, Yashiro W, Kuwabara H and Kawabata K 2009 Jpn. J. Appl. Phys. 48 076512 [6] Yashiro W, Terui Y, Kawabata K and Momose A 2010 Opt. Express 18 16890 [7] Ge X, Wang Z L, Gao K, Zhang K, Hong Y L, Wang D J, Zhu P P and Wu Z Y 2011 Anal. Bioanal. Chem. 401 865 [8] Wang Z L, Gao K, Chen J, Ge X, Zhu P P, Tian Y C and Wu Z Y 2012 Chin. Phys. B 21 118703 [9] Wang Z L, Gao K, Ge X, Wu Z, Chen H, Wang S H, Zhu P P, Yuan Q X, Huang W X, Zhang K and Wu Z Y 2013 J. Phys. D: Appl. Phys. 46 494003 [10] Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H and Shimura T 2014 Opt. Lett. 39 4297 [11] Liu X, Guo J C, Lei Y H, Li J and Niu H B 2016 Chin. Phys. B 25 028704 [12] Yang J, Guo J C, Lei Y H, Yi M H and Chen L 2017 Chin. Phys. B 26 028701 [13] Wei C X, Wu Z, Fazi W, Wei W B, Bao Y, Luo R H, Wang L, Liu G and Tian Y C 2017 Chin. Phys. B 26 108701 [14] Rong F, Gao Y, Guo C J, Xu W and Xu W 2019 Chin. Phys. B 28 108702 [15] Faiz W, Li J, Gao K, Wu Z, Lei Y H, Huang J H and Zhu P P 2020 Chin. Phys. B 29 014301 [16] Xi Y, Kou B Q, Sun H H, Qi J C, Sun J Q, Mohr J, Börner M, Zhao J, Xu L X, Xiao T Q and Wang Y J 2012 J. Synchrotron Rad. 19 821 [17] Wang Z L, Zhou R C, Zhao L M, Ren K, Xu W, Liu B and Chen H 2021 Chin. Phys. B 30 028702 [18] Yang J, Huang J H, Lei Y H, Zheng J B, Shan Y Z, Guo D Y and Guo J C 2022 Chin. Phys. B 31 058701 [19] Arboleda C, Wang Z, Jefimovs K, Koehler T, Stevendaal U V, Kuhn N, David B, Prevrhal S, Lång K, Forte S, Kubik-Huch R A, Leo C, Singer G, Marcon M, Boss A, Roessl E and Stampanoni M 2020 Eur. Radiol. 30 1419 [20] Rauch T, Rieger J, Pelzer G, Horn F, Erber R, Wunderle M, Emons J, Nabieva N, Fuhrich N, Michel T, Hartmann A, Fasching P and Antion G 2020 Med. Phys. 47 1813 [21] Notohamiprodjo S, Webber N, Birnbacher L, Willner M, Viermetz M, Herzen J, Marschner M, Mayr D, Bartsch H, Saam T, Auweter S, Pfeiffer F, Reiser M and Hetterich H 2018 Invest. Radiol. 53 26 [22] Yang F, Prade F, Griffa M, Jerjen I, Bella C Di, Herzen J, Sarapata A, Pfeiffer F and Lura P 2014 Appl. Phys. Lett. 105 154105 [23] Ruiz-Yaniz M, Zanette I, Sarapata A, Birnbacher L, Marschner M, Chabior M, Olbinado M, Pfeiffer F and Rack A 2016 J. Synchrotron Rad. 23 1202 [24] Bachche S, Nonoguchi M, Kato K, Kageyama M, Koike T, Kuribayashi M and Momose A 2017 Sci. Rep. 7 6711 [25] Miller E A, White T A, McDonald B S and Seifert A 2013 IEEE Trans. Nucl. Sci. 60 416 [26] Hellbach K, Beller E, Schindler A, Schoeppe F, Hesse N, Baumann A, Schinner R, Auweter S, Hauke C, Radicke M and Meinel F 2018 Invest. Radiol. 53 352 [27] Gradl R, Morgan K S, Dierolf M, Jud C, Hehn L, Günther B, Möller W, Kutschke D, Yang L, Stoeger T, Pfeiffer D, Gleich B, Achterhold K, Schmid O and Pfeiffer F 2019 IEEE Trans. Med. Imaging 38 649 [28] Willer K, Fingerle A, Noichl W, et al. 2021 Lancet Digit. Health 3 e733 [29] Frank M, Urban T, Willer K, et al. 2021 Med. Phys. 48 6152 [30] Weber T, Bartl P, Bayer F, Durst J, Haas W, Michel T, Ritter A and Anton G 2011 Med. Phys. 38 4133 [31] Hauke C, Leghissa M, Pelzer G, Radicke M, Weber T, Mertelmeier T, Anton G and Ritschl L 2017 Opt. Express 25 32897 [32] Marco F, Marschnr M, Birnbacher L, Noël P, Herzen J and Pfeiffer F 2018 Opt. Express 26 12707 [33] Hashimoto K, Takano H and Momose A 2020 Opt. Express 28 16363 [34] Viermetz M, Gustschin N, Schmid C, Haeusele J, Teuffenbach M, Meyer P, Bergner F, Lasser T, Proksa R, Koehler T and Pfeiffer F 2022 Proc. Natl. Acad. Sci. USA 119 e2118799119 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|