Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038704    DOI: 10.1088/1674-1056/ac946a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging

Zhi-Li Wang(王志立)1,†, Zi-Han Chen(陈子涵)1, Yao Gu(顾瑶)1, Heng Chen(陈恒)1, and Xin Ge(葛昕)2
1 Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230009, China;
2 Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518067, China
Abstract  X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years. X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phase-stepping data. The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position. However, stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition. Previous studies have shown that those influences introduce errors in the acquired phase-stepping data, which cause obvious moiré artifacts in the retrieved refraction image. This work investigates moiré artifacts in x-ray dark-field imaging as a result of flux fluctuations. For the retrieved mean intensity, amplitude, visibility and dark-field images, the dependence of moiré artifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion. Results of synchrotron radiation experiments verify the validity of the derived analytical formulas. The spatial frequency characteristics of moiré artifacts are analyzed and compared to those induced by phase-stepping errors. It illustrates that moiré artifacts can be estimated by a weighted mean of flux fluctuation factors, with the weighting factors dependent on the moiré phase and different greatly for each retrieved image. Furthermore, moiré artifacts can even be affected by object's features not displayed in the particular contrast. These results can be used to interpret images correctly, identify sources of moiré artifacts, and develop dedicated algorithms to remove moiré artifacts in the retrieved multi-contrast images.
Keywords:  x-ray imaging      dark-field imaging      moiré artifacts      flux fluctuations  
Received:  23 June 2022      Revised:  03 September 2022      Accepted manuscript online:  23 September 2022
PACS:  87.59.-e (X-ray imaging)  
  87.64.mf (Dark field)  
  87.57.cp (Artifacts and distortion)  
  87.57.N- (Image analysis)  
Fund: Project supported by the Natural Science Foundation of China (Grant Nos. U1532113, 11475170, and 11905041), Fundamental Research Funds for the Central Universities (Grant No. PA2020GDKC0024), and Anhui Provincial Natural Science Foundation (Grant No. 2208085MA18).
Corresponding Authors:  Zhi-Li Wang     E-mail:  dywangzl@hfut.edu.cn

Cite this article: 

Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕) Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging 2023 Chin. Phys. B 32 038704

[1] Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P and Ziegler E 2005 Opt. Express 13 6296
[2] Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258
[3] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann Ch, Grünzweig C and David C 2008 Nat. Mater. 7 134
[4] Donath T, Chabior M, Pfeiffer F, Bunk O, Reznikova E, Mohr J, Hempel E, Popescu S, Hoheisel M, Schuster M, Baumann J and David C 2009 J. Appl. Phys. 106 054703
[5] Momose A, Yashiro W, Kuwabara H and Kawabata K 2009 Jpn. J. Appl. Phys. 48 076512
[6] Yashiro W, Terui Y, Kawabata K and Momose A 2010 Opt. Express 18 16890
[7] Ge X, Wang Z L, Gao K, Zhang K, Hong Y L, Wang D J, Zhu P P and Wu Z Y 2011 Anal. Bioanal. Chem. 401 865
[8] Wang Z L, Gao K, Chen J, Ge X, Zhu P P, Tian Y C and Wu Z Y 2012 Chin. Phys. B 21 118703
[9] Wang Z L, Gao K, Ge X, Wu Z, Chen H, Wang S H, Zhu P P, Yuan Q X, Huang W X, Zhang K and Wu Z Y 2013 J. Phys. D: Appl. Phys. 46 494003
[10] Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H and Shimura T 2014 Opt. Lett. 39 4297
[11] Liu X, Guo J C, Lei Y H, Li J and Niu H B 2016 Chin. Phys. B 25 028704
[12] Yang J, Guo J C, Lei Y H, Yi M H and Chen L 2017 Chin. Phys. B 26 028701
[13] Wei C X, Wu Z, Fazi W, Wei W B, Bao Y, Luo R H, Wang L, Liu G and Tian Y C 2017 Chin. Phys. B 26 108701
[14] Rong F, Gao Y, Guo C J, Xu W and Xu W 2019 Chin. Phys. B 28 108702
[15] Faiz W, Li J, Gao K, Wu Z, Lei Y H, Huang J H and Zhu P P 2020 Chin. Phys. B 29 014301
[16] Xi Y, Kou B Q, Sun H H, Qi J C, Sun J Q, Mohr J, Börner M, Zhao J, Xu L X, Xiao T Q and Wang Y J 2012 J. Synchrotron Rad. 19 821
[17] Wang Z L, Zhou R C, Zhao L M, Ren K, Xu W, Liu B and Chen H 2021 Chin. Phys. B 30 028702
[18] Yang J, Huang J H, Lei Y H, Zheng J B, Shan Y Z, Guo D Y and Guo J C 2022 Chin. Phys. B 31 058701
[19] Arboleda C, Wang Z, Jefimovs K, Koehler T, Stevendaal U V, Kuhn N, David B, Prevrhal S, Lång K, Forte S, Kubik-Huch R A, Leo C, Singer G, Marcon M, Boss A, Roessl E and Stampanoni M 2020 Eur. Radiol. 30 1419
[20] Rauch T, Rieger J, Pelzer G, Horn F, Erber R, Wunderle M, Emons J, Nabieva N, Fuhrich N, Michel T, Hartmann A, Fasching P and Antion G 2020 Med. Phys. 47 1813
[21] Notohamiprodjo S, Webber N, Birnbacher L, Willner M, Viermetz M, Herzen J, Marschner M, Mayr D, Bartsch H, Saam T, Auweter S, Pfeiffer F, Reiser M and Hetterich H 2018 Invest. Radiol. 53 26
[22] Yang F, Prade F, Griffa M, Jerjen I, Bella C Di, Herzen J, Sarapata A, Pfeiffer F and Lura P 2014 Appl. Phys. Lett. 105 154105
[23] Ruiz-Yaniz M, Zanette I, Sarapata A, Birnbacher L, Marschner M, Chabior M, Olbinado M, Pfeiffer F and Rack A 2016 J. Synchrotron Rad. 23 1202
[24] Bachche S, Nonoguchi M, Kato K, Kageyama M, Koike T, Kuribayashi M and Momose A 2017 Sci. Rep. 7 6711
[25] Miller E A, White T A, McDonald B S and Seifert A 2013 IEEE Trans. Nucl. Sci. 60 416
[26] Hellbach K, Beller E, Schindler A, Schoeppe F, Hesse N, Baumann A, Schinner R, Auweter S, Hauke C, Radicke M and Meinel F 2018 Invest. Radiol. 53 352
[27] Gradl R, Morgan K S, Dierolf M, Jud C, Hehn L, Günther B, Möller W, Kutschke D, Yang L, Stoeger T, Pfeiffer D, Gleich B, Achterhold K, Schmid O and Pfeiffer F 2019 IEEE Trans. Med. Imaging 38 649
[28] Willer K, Fingerle A, Noichl W, et al. 2021 Lancet Digit. Health 3 e733
[29] Frank M, Urban T, Willer K, et al. 2021 Med. Phys. 48 6152
[30] Weber T, Bartl P, Bayer F, Durst J, Haas W, Michel T, Ritter A and Anton G 2011 Med. Phys. 38 4133
[31] Hauke C, Leghissa M, Pelzer G, Radicke M, Weber T, Mertelmeier T, Anton G and Ritschl L 2017 Opt. Express 25 32897
[32] Marco F, Marschnr M, Birnbacher L, Noël P, Herzen J and Pfeiffer F 2018 Opt. Express 26 12707
[33] Hashimoto K, Takano H and Momose A 2020 Opt. Express 28 16363
[34] Viermetz M, Gustschin N, Schmid C, Haeusele J, Teuffenbach M, Meyer P, Bergner F, Lasser T, Proksa R, Koehler T and Pfeiffer F 2022 Proc. Natl. Acad. Sci. USA 119 e2118799119
[1] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[2] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[3] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[4] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[5] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[6] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[7] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[8] Shifting curves based on the detector integration effect for x-ray phase contrast imaging
Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力). Chin. Phys. B, 2017, 26(2): 028701.
[9] Simple phase extraction in x-ray differential phase contrast imaging
Xin Liu(刘鑫), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ji Li(李冀), Han-Ben Niu(牛憨笨). Chin. Phys. B, 2016, 25(2): 028704.
[10] Elemental x-ray imaging using Zernike phase contrast
Qi-Gang Shao(邵其刚), Jian Chen(陈健), Faiz Wali, Yuan Bao(鲍园), Zhi-Li Wang(王志立), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超), Kun Gao(高昆). Chin. Phys. B, 2016, 25(10): 108702.
[11] Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage
Wang Sheng-Hao (王圣浩), Margie P. Olbinado, Atsushi Momose, Han Hua-Jie (韩华杰), Hu Ren-Fang (胡仁芳), Wang Zhi-Li (王志立), Gao Kun (高昆), Zhang Kai (张凯), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(6): 068703.
[12] Cosine fitting radiography and computed tomography
Li Pan-Yun (李盼云), Zhang Kai (张凯), Huang Wan-Xia (黄万霞), Yuan Qing-Xi (袁清习), Wang Yan (王研), Ju Zai-Qiang (鞠在强), Wu Zi-Yu (吴自玉), Zhu Pei-Ping (朱佩平). Chin. Phys. B, 2015, 24(6): 068704.
[13] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
[14] Improvement and error analysis of quantitative information extraction in diffraction-enhanced imaging
Yang Hao (杨浩), Xuan Rui-Jiao (轩瑞娇), Hu Chun-Hong (胡春红), Duan Jing-Hao (段敬豪). Chin. Phys. B, 2014, 23(4): 048701.
[15] Fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios
Zhang Xiao-Dan (张晓丹), Xia Cheng-Jie (夏成杰), Xiao Xiang-Hui (肖相辉), Wang Yu-Jie (王宇杰). Chin. Phys. B, 2014, 23(4): 044501.
No Suggested Reading articles found!