Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087303    DOI: 10.1088/1674-1056/ac6582
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors

Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆)
Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China
Abstract  The effective-medium theory (EMT) has proved successful in modeling the non-saturating linear magnetoresistance induced by inhomogeneity. However, calculating magnetoresistance using the EMT usually involves solving coupled integral equations which have no analytical solutions, and therefore, it is still difficult to directly compare the predictions of EMT with experimental data. Here we demonstrate that the linear magnetoresistance predicted by the EMT can be either exactly formulated or well approximated by a simple analytical equation $\Delta\rho/\rho_0=\sqrt{k^2B^2+a^2}-a$ in a number of known situations. The relations between the EMT parameters and the phenomenological parameters $k$ and $a$ are evaluated. Our results provide a convenient and effective method for extracting the EMT parameters from experimental data.
Keywords:  linear magnetoresistance      effective medium theory  
Received:  08 March 2022      Revised:  08 April 2022      Accepted manuscript online:  08 April 2022
PACS:  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  72.20.My (Galvanomagnetic and other magnetotransport effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904259) and the Natural Science Foundation of Tianjin (Grant No. 20JC-QNJC02040).
Corresponding Authors:  Fan Yang     E-mail:  fanyangphys@tju.edu.cn

Cite this article: 

Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆) Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors 2022 Chin. Phys. B 31 087303

[1] Xu R, Husmann A, Rosenbaum T F, Saboungi M, Enderby J E and Littlewood P B 1997 Nature 390 57
[2] Husmann A, Betts J B, Boebinger G S, Migliori A, Rosenbaum T F and Saboungi M L 2002 Nature 417 421
[3] Hu J and Rosenbaum T F 2008 Nat. Mater. 7 697
[4] Tiwari R P and Stroud D 2009 Phys. Rev. B 79 165408
[5] Friedman A L, Tedesco J L, Campbell P M, Culbertson J C, Aifer E, Perkins F K, Myers-Ward R L, Hite J K, Eddy C R Jr and Jernigan G G 2010 Nano Lett. 10 3962
[6] Ping J, Yudhistira I, Ramakrishnan N, Cho S, Adam S and Fuhrer M S 2014 Phys. Rev. Lett. 113 047206
[7] Wang W J, Gao K H, Li Z Q, Lin T, Li J, Yu C and Feng Z H 2014 Appl. Phys. Lett. 105 182102
[8] Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S and Weber H B 2015 Nat. Phys. 11 650
[9] Tian J, Chang C, Cao H, He K, Ma X, Xue Q and Chen Y P 2014 Sci. Rep. 4 4859
[10] Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D and Gao X P 2014 Nano Lett. 14 6510
[11] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J and Liu Z 2015 Nat. Phys. 11 645
[12] Novak M, Sasaki S, Segawa K and Ando Y 2015 Phys. Rev. B 91 041203
[13] Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, Shi Y and Lu L 2015 Phys. Rev. B 92 081306
[14] Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C and Kong T 2015 Phys. Rev. Lett. 114 117201
[15] Sinchenko A A, Grigoriev P D, Lejay P and Monceau P 2017 Phys. Rev. B 96 245129
[16] Feng Y, Wang Y, Silevitch D M, Yan J, Kobayashi R, Hedo M, Nakama T, Ōnuki Y, Suslov A V and Mihaila B 2019 Proc. Natl. Acad. Sci. USA 116 11201
[17] Chen H X, Li Z L, Fan X, Guo L W and Chen X L 2018 Solid State Commun. 275 16
[18] Zhang X, Luo T C, Hu X Y, Guo J, Lin G C, Li Y H, Liu Y Z, Li X K, Ge J, Xing Y, Zhu Z W, Gao P, Sun L L and Wang J 2019 Chin. Phys. Lett. 36 057402
[19] Gu S Y, Fan K X, Yang Y, Wang H, Li Y K, Qu F M, Liu G T, Li Z A, Wang Z Z, Yao Y G, Li J Q, Lu L and Yang F 2021 Phys. Rev. B 104 115203
[20] Abrikosov A A 1998 Phys. Rev. B 58 2788
[21] Abrikosov A A 2000 Europhys. Lett. 49 789
[22] Parish M M and Littlewood P B 2003 Nature 426 162
[23] Parish M M and Littlewood P B 2005 Phys. Rev. B 72 094417
[24] Hu J, Parish M M and Rosenbaum T F 2007 Phys. Rev. B 75 214203
[25] Stroud D and Pan F P 1976 Phys. Rev. B 13 1434
[26] Guttal V and Stroud D 2005 Phys. Rev. B 71 201304
[27] Ramakrishnan N, Lai Y T, Lara S, Parish M M and Adam S 2017 Phys. Rev. B 96 224203
[28] Cho S and Fuhrer M S 2008 Phys. Rev. B 77 081402
[29] Tiwari R P and Stroud D 2009 Phys. Rev. B 79 165408
[1] Homogeneous transparent device and its layered realization
Cheng-Fu Yang(杨成福), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Fu-Chun Mao(毛福春), Ting-Hua Li(李廷华), Peng Li(黎鹏), Peng-Shan Ren(任鹏姗). Chin. Phys. B, 2018, 27(12): 124101.
[2] Quantum transport properties of the three-dimensional Dirac semimetal Cd3As2 single crystals
Lan-Po He(何兰坡), Shi-Yan Li(李世燕). Chin. Phys. B, 2016, 25(11): 117105.
[3] Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals
Liang Hong (梁红), Liu Huan (刘欢), Zhang Qiang (张强), Fu Shu-Fang (付淑芳), Zhou Sheng (周胜), Wang Xuan-Zhang (王选章). Chin. Phys. B, 2015, 24(6): 067807.
[4] Shrinking device realized by using layered structures of homogeneous isotropic materials
Guo Ya-Nan(郭亚楠), Liu Shao-Bin(刘少斌), Zhao Xin(赵鑫), Wang Shen-Yun(王身云), and Chen Chen(陈忱) . Chin. Phys. B, 2012, 21(6): 064101.
[5] Simplified triangular ground plane cloak by oblique multilayer dielectrics
Wang Shen-Yun(王身云) and Liu Shao-Bin(刘少斌) . Chin. Phys. B, 2012, 21(4): 044102.
[6] New assembly route for three-dimensional metamaterials obtained through effective medium theory
Zang Yuan-Zhang (臧元章), He Ming-Xia (何明霞), Gu Jian-Qiang (谷建强), Tian Zhen (田震), Han Jia-Guang (韩家广 ). Chin. Phys. B, 2012, 21(11): 117802.
[7] Far-infrared conductivity of CuS nanoparticles measured by terahertz time-domain spectroscopy
Yang Yu-Ping(杨玉平), Zhang Zhen-Wei(张振伟), Shi Yu-Lei(施宇蕾), Feng Shuai(冯帅), and Wang Wen-Zhong(王文忠). Chin. Phys. B, 2010, 19(4): 043302.
[8] Optimal design of sub-wavelength metal rectangular gratings for polarizing beam splitter based on effective medium theory
Zhao Hua-Jun(赵华君),Peng Yong-Jun(彭拥军),Tan Ju(谭菊) Liao Chang-Rong(廖长荣),Li Peng(李鹏), and Ren Xiao-Xia(任晓霞) . Chin. Phys. B, 2009, 18(12): 5326-5330.
No Suggested Reading articles found!