CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors |
Shan-Shan Chen(陈珊珊)†, Yang Yang(杨阳)†, and Fan Yang(杨帆)‡ |
Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China |
|
|
Abstract The effective-medium theory (EMT) has proved successful in modeling the non-saturating linear magnetoresistance induced by inhomogeneity. However, calculating magnetoresistance using the EMT usually involves solving coupled integral equations which have no analytical solutions, and therefore, it is still difficult to directly compare the predictions of EMT with experimental data. Here we demonstrate that the linear magnetoresistance predicted by the EMT can be either exactly formulated or well approximated by a simple analytical equation $\Delta\rho/\rho_0=\sqrt{k^2B^2+a^2}-a$ in a number of known situations. The relations between the EMT parameters and the phenomenological parameters $k$ and $a$ are evaluated. Our results provide a convenient and effective method for extracting the EMT parameters from experimental data.
|
Received: 08 March 2022
Revised: 08 April 2022
Accepted manuscript online: 08 April 2022
|
PACS:
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904259) and the Natural Science Foundation of Tianjin (Grant No. 20JC-QNJC02040). |
Corresponding Authors:
Fan Yang
E-mail: fanyangphys@tju.edu.cn
|
Cite this article:
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆) Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors 2022 Chin. Phys. B 31 087303
|
[1] Xu R, Husmann A, Rosenbaum T F, Saboungi M, Enderby J E and Littlewood P B 1997 Nature 390 57 [2] Husmann A, Betts J B, Boebinger G S, Migliori A, Rosenbaum T F and Saboungi M L 2002 Nature 417 421 [3] Hu J and Rosenbaum T F 2008 Nat. Mater. 7 697 [4] Tiwari R P and Stroud D 2009 Phys. Rev. B 79 165408 [5] Friedman A L, Tedesco J L, Campbell P M, Culbertson J C, Aifer E, Perkins F K, Myers-Ward R L, Hite J K, Eddy C R Jr and Jernigan G G 2010 Nano Lett. 10 3962 [6] Ping J, Yudhistira I, Ramakrishnan N, Cho S, Adam S and Fuhrer M S 2014 Phys. Rev. Lett. 113 047206 [7] Wang W J, Gao K H, Li Z Q, Lin T, Li J, Yu C and Feng Z H 2014 Appl. Phys. Lett. 105 182102 [8] Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S and Weber H B 2015 Nat. Phys. 11 650 [9] Tian J, Chang C, Cao H, He K, Ma X, Xue Q and Chen Y P 2014 Sci. Rep. 4 4859 [10] Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D and Gao X P 2014 Nano Lett. 14 6510 [11] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J and Liu Z 2015 Nat. Phys. 11 645 [12] Novak M, Sasaki S, Segawa K and Ando Y 2015 Phys. Rev. B 91 041203 [13] Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, Shi Y and Lu L 2015 Phys. Rev. B 92 081306 [14] Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C and Kong T 2015 Phys. Rev. Lett. 114 117201 [15] Sinchenko A A, Grigoriev P D, Lejay P and Monceau P 2017 Phys. Rev. B 96 245129 [16] Feng Y, Wang Y, Silevitch D M, Yan J, Kobayashi R, Hedo M, Nakama T, Ōnuki Y, Suslov A V and Mihaila B 2019 Proc. Natl. Acad. Sci. USA 116 11201 [17] Chen H X, Li Z L, Fan X, Guo L W and Chen X L 2018 Solid State Commun. 275 16 [18] Zhang X, Luo T C, Hu X Y, Guo J, Lin G C, Li Y H, Liu Y Z, Li X K, Ge J, Xing Y, Zhu Z W, Gao P, Sun L L and Wang J 2019 Chin. Phys. Lett. 36 057402 [19] Gu S Y, Fan K X, Yang Y, Wang H, Li Y K, Qu F M, Liu G T, Li Z A, Wang Z Z, Yao Y G, Li J Q, Lu L and Yang F 2021 Phys. Rev. B 104 115203 [20] Abrikosov A A 1998 Phys. Rev. B 58 2788 [21] Abrikosov A A 2000 Europhys. Lett. 49 789 [22] Parish M M and Littlewood P B 2003 Nature 426 162 [23] Parish M M and Littlewood P B 2005 Phys. Rev. B 72 094417 [24] Hu J, Parish M M and Rosenbaum T F 2007 Phys. Rev. B 75 214203 [25] Stroud D and Pan F P 1976 Phys. Rev. B 13 1434 [26] Guttal V and Stroud D 2005 Phys. Rev. B 71 201304 [27] Ramakrishnan N, Lai Y T, Lara S, Parish M M and Adam S 2017 Phys. Rev. B 96 224203 [28] Cho S and Fuhrer M S 2008 Phys. Rev. B 77 081402 [29] Tiwari R P and Stroud D 2009 Phys. Rev. B 79 165408 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|