CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices |
Shao-Jin Qi(齐少锦)1,2,†, Xuan Sun(孙璇)1,†, Xi Yan(严曦)1,2, Hui Zhang(张慧)1,2, Hong-Rui Zhang(张洪瑞)1,2, Jin-E Zhang(张金娥)1,2, Hai-Lin Huang(黄海林)1,2, Fu-Rong Han(韩福荣)1,2, Jing-Hua Song(宋京华)1,2, Bao-Gen Shen(沈保根)1,2, and Yuan-Sha Chen(陈沅沙)1,2,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The electric gating on the transport properties of two-dimensional electron gas (2DEG) at the interface of LaAlO3/SrTiO3 (LAO/STO) heterostructure has attracted great research interest due to its potential application in field-effect devices. Most of previous works of gate effect were focused on the LAO/STO heterostructure containing only one conductive interface. Here, we systematically investigated the gate effect on high-quality LAO/STO superlattices (SLs) fabricated on the TiO2-terminated (001) STO substrates. In addition to the good metallicity of all SLs, we found that there are two types of charge carriers, the majority carriers and the minority carriers, coexisting in the SLs. The sheet resistance of the SLs with a fixed thickness of the LAO layer increases monotonically as the thickness of the STO layer increases. This is derived from the dependence of the minority carrier density on the thickness of STO. Unlike the LAO/STO heterostructure in which minority and majority carriers are simultaneously modulated by the gate effect, the minority carriers in the SLs can be tuned more significantly by the electric gating while the density of majority carriers is almost invariable. Thus, we consider that the minority carriers may mainly exist in the first interface near the STO substrate that is more sensitive to the back-gate voltage, and the majority carriers exist in the post-deposited STO layers. The SL structure provides the space separation for the multichannel conduction in the 2DEG, which opens an avenue for the design of field-effect devices based on LAO/STO heterostructure.
|
Received: 17 September 2020
Revised: 17 September 2020
Accepted manuscript online: 28 October 2020
|
PACS:
|
73.21.Cd
|
(Superlattices)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, 2017YFA0303601, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, 11674378, 11934016, and 51972335), and the Key Program of the Chinese Academy of Sciences. |
Corresponding Authors:
†These authors contributed to this work equally. ‡Corresponding author. E-mail: yschen@aphy.iphy.ac.cn
|
Cite this article:
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙) Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices 2021 Chin. Phys. B 30 017301
|
1 Ohtomo A and Hwang H Y 2004 Nature 427 423 2 Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103 3 Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196 4 Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank and Hilgenkamp H 2007 Nat. Mater. 6 493 5 Ngo T D N, Chang J W, Lee K, Han S, Lee J S, Kim Y H, Jung M H, Doh Y J, Choi M S, Song J and Kim J 2015 Nat. Commun. 6 8035 6 Zhang H R, Yun Y, Zhang X J, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y S, Liu W, Hu F X, Liu B G, Shen B G, Han W and Sun J R 2018 Phys. Rev. Lett. 121 116803 7 Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942 8 Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C and Triscone J M 2010 Phys. Rev. Lett. 104 126803 9 Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquez J, Varela M, Scigaj M, Dix N, Sanchez F and Fontcuberta J 2015 Nat. commun. 6 6028 10 Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R and Han W 2017 Sci. Adv. 3 e1602312 11 Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D P, Yu J W, Venkatesan T and Yang H 2017 Nano Lett. 17 7659 12 Lee H, Campbell N, Lee J, Asel T J, Paudel T R, Zhou H, Lee J W, Noesges B, Seo J, Park B, Brillson L J, Oh S H, Tsymbal E Y, Rzchowski M S and Eom C B 2018 Nat. Mater. 17 231 13 Kim J S, Seo S S A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B 82 201407 14 Gunkel F, Bell C, Inoue H, Kim B, Swartz A G, Merz T A, Hikita Y, Harashima S, Sato H K, Minohara M, Hoffmann-Eifert S, Dittmann R and Hwang H Y 2016 Phys. Rev. X 6 031035 15 Joshua A, Pecker S, Ruhman J, Altman E and Ilani S 2012 Nat. Commun. 3 1126 16 Ben Shalom M, Ron A, Palevski A and Dagan Y 2010 Phys. Rev. Lett. 105 206401 17 Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Buchner B, Shen B G, Linderothand S and Pryds N 2013 Nat. Commun. 4 1371 18 Pentcheva R, Huijben M, Otte K, Pickett W E, Kleibeuker J E, Huijben J, Boschker H, Kockmann D, Siemons W, Koster G, Zandvliet H J W, Rijnders G, Blank D H A, Hilgenkamp H and Brinkman A.2010 Phys. Rev. Lett. 104 166804 19 Sakudo T and Unoki H 1971 Phys. Rev. Lett. 26 851 20 Zhang H R, Zhang Y, Zhang H, Zhang J, Shen X, Guan X X, Chen Y Z, Yu R C, Pryds N, Chen Y S, Shen B G and Sun J R 2017 Phys. Rev. B 96 195167 21 Bell C, Harashima S, Kozuka Y, Kim M, Kim B G, Hikita Y and Hwang H Y 2009 Phys. Rev. Lett. 103 226802 22 Stornaiuolo D, Cantoni C, De Luca G M, Di Capua R, Di Gennaro E, Ghiringhelli G, Jouault B, Marr\`e D, Massarotti D, Granozio F M, Pallecchi I, Piamonteze C, Rusponi S, Tafuri F and Salluzzo M 2016 Nat. Mater. 15 278 23 Cao Y W, Yang Z Z, Kareev M, Liu X R, Meyers D, Middey S, Choudhury D, Shafer P, Guo J D, Freeland J W, Arenholz E, Gu L and Chakhalian J 2016 Phys. Rev. Lett. 116 076802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|