|
|
Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals |
Han-Bin Deng(邓翰宾)1,2,†, Yuan Li(李渊)1,2,†, Zili Feng(冯子力)1,2, Jian-Yu Guan(关剑宇)1,2, Xin Yu(于鑫)1, Xiong Huang(黄雄)1,2, Rui-Zhe Liu(刘睿哲)1,2, Chang-Jiang Zhu(朱长江)1,2, Limin Liu(刘立民)1,2, Ying-Kai Sun(孙英开)1,2, Xi-Liang Peng(彭锡亮)1,2, Shuai-Shuai Li(李帅帅)1,2, Xin Du(杜鑫)1,2, Zheng Wang(王铮)1,2, Rui Wu(武睿)1,3, Jia-Xin Yin(殷嘉鑫)4, You-Guo Shi(石友国)1,3,5, and Han-Qing Mao(毛寒青)1,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Laboratory for Topological Quantum Matter and Spectroscopy(B7), Department of Physics, Princeton University, Princeton, NJ 08544, USA; 5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Interface can be a fertile ground for exotic quantum states, including topological superconductivity, Majorana mode, fractal quantum Hall effect, unconventional superconductivity, Mott insulator, etc. Here we grow single-unit-cell (1UC) FeTe film on NbSe2 single crystal by molecular beam epitaxy (MBE) and investigate the film in-situ with a home-made cryogenic scanning tunneling microscopy (STM) and non-contact atomic force microscopy (AFM) combined system. We find different stripe-like superlattice modulations on grown FeTe film with different misorientation angles with respect to NbSe2 substrate. We show that these stripe-like superlattice modulations can be understood as moiré pattern forming between FeTe film and NbSe2 substrate. Our results indicate that the interface between FeTe and NbSe2 is atomically sharp. By STM-AFM combined measurement, we suggest that the moiré superlattice modulations have an electronic origin when the misorientation angle is relatively small (≤ 3°) and have structural relaxation when the misorientation angle is relatively large (≥ 10°).
|
Received: 23 March 2021
Revised: 02 June 2021
Accepted manuscript online: 04 June 2021
|
PACS:
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
07.79.Cz
|
(Scanning tunneling microscopes)
|
|
07.79.Lh
|
(Atomic force microscopes)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400, 2016YFA0300602, and 2017YFA0302903), the National Natural Science Foundation of China (Grant No. 11227903), the Beijing Municipal Science and Technology Commission, China (Grant Nos. Z181100004218007 and Z191100007219011), the National Basic Research Program of China (Grant No. 2015CB921304), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB07000000, XDB28000000, and XDB33000000). |
Corresponding Authors:
Han-Qing Mao
E-mail: mhq@iphy.ac.cn
|
Cite this article:
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青) Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals 2021 Chin. Phys. B 30 126801
|
[1] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [2] Linder J, Tanaka Y, Yokoyama T, Sudbo A and Nagaosa N 2010 Phys. Rev. Lett. 104 067001 [3] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [4] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F and Xue Q K 2012 Science 336 52 [5] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett. 112 217001 [6] Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W, Li Q, Gilbert M J, Chou F, Samarth N and Hasan M Z 2014 Nat. Phys. 10 943 [7] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 [8] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003 [9] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598 [10] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [11] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F 2019 Nature 572 215 [12] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [13] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [14] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237 [15] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543 [16] Peng X L, Li Y, Wu X X, Deng H B, Shi X, Fan W H, Li M, Huang Y B, Qian T, Richard P, Hu J P, Pan S H, Mao H Q, Sun Y J and Ding H 2019 Phys. Rev. B 100 155134 [17] Wu X, Qin S, Liang Y, Fan H and Hu J 2016 Phys. Rev. B 93 115129 [18] Shi X, Han Z Q, Richard P, Wu X X, Peng X L, Qian T, Wang S C, Hu J P, Sun Y J and Ding H 2017 Sci. Bull. 62 503 [19] Mao H Q unpublished [20] Wang Y, Jiang Y, Chen M, Li Z, Song C, Wang L, He K, Chen X, Ma X and Xue Q K 2012 J. Phys. Condens. Matter. 24 475604 [21] Eich A, Rollfing N, Arnold F, Sanders C, Ewen P R, Bianchi M, Dendzik M, Michiardi M, Mi J L, Bremholm M, Wegner D, Hofmann P and Khajetoorians A A 2016 Phys. Rev. B 94 125437 [22] Singh U R, Warmuth J, Markmann V, Wiebe J and Wiesendanger R 2016 J. Phys. Condens. Matter. 29 025004 [23] Cavallin A, Sevriuk V, Fischer K N, Manna S, Ouazi S, Ellguth M, Tusche C, Meyerheim H L, Sander D and Kirschner J 2016 Surf. Sci. 646 72 [24] Song S Y, Martiny J H J, Kreisel A, Andersen B M and Seo J 2020 Phys. Rev. Lett. 124 117001 [25] Qin H, Chen X, Guo B, Pan T, Zhang M, Xu B, Chen J, He H, Mei J, Chen W, Ye F and Wang G 2021 Nano Lett. 21 1327 [26] Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W and Loh K P 2017 J. Am. Chem. Soc. 139 9392 [27] Hembacher S, Giessibl F J, Mannhart J and Quate C F 2003 Proc. Natl. Acad. Sci. USA 100 12539 [28] Mao H Q, Li N, Chen X and Xue Q K 2012 Chin. Phys. Lett. 29 066802 [29] Sun Z, Hämäläinen S K, Sainio J, Lahtinen J, Vanmaekelbergh D and Liljeroth P 2011 Phys. Rev. B 83 081415 [30] Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F and Li X 2021 Nat. Mater. 20 1100 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|