Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106805    DOI: 10.1088/1674-1056/ac04a6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation

Xiao-Peng Luo(罗晓朋)1, Yan-Fei Liu(刘延飞)1,†, Dong-Dong Yang(杨东东)1, Cheng Chen(陈诚)1, Xiu-Jian Li(李修建)2, and Jie-Pan Ying(应杰攀)3
1 Department of Basic Courses, Rocket Force University of Engineering, Xi'an 710025, China;
2 College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China;
3 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  For widespectrum chaotic oscillation, superlattice cryptography is an autonomous controllable brand-new technology. Originating from sequential resonance tunneling of electrons, the chaotic oscillation is susceptible to temperature change, which determines the performance of superlattices. In this paper, the temperature effects of chaotic oscillations are investigated by analyzing the randomness of a sequence at different temperatures and explained with superlattice microstates. The results show that the bias voltage at different temperatures makes spontaneous chaotic oscillations vary. With the temperature of superlattices changing, the sequence dives in entropy value and randomness at specific bias. This work fills the gap in the study of temperature stability and promotes superlattice cryptography for practice.
Keywords:  superlattices      chaotic oscillation      temperature      randomness  
Received:  09 April 2021      Revised:  29 April 2021      Accepted manuscript online:  25 May 2021
PACS:  68.65.Cd (Superlattices)  
  73.40.Gk (Tunneling)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61834004).
Corresponding Authors:  Yan-Fei Liu     E-mail:  bbmcu@126.com

Cite this article: 

Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀) Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation 2021 Chin. Phys. B 30 106805

[1] Esaki L and Tsu R 1970 IBM J. Res. Dev. 14 61
[2] Sawaki N, Suzuki M, Takagaki Y, Goto H and Akasaki I 1986 Superlattices Microstruct. 2 281
[3] Sibille A, Palmier J F, Wang H, Esnault J C and Mollot F 1990 Appl. Phys. Lett. 56 256
[4] Griem H T, Hsieh K H, Daenens I J and Delaney M J 1987 J. Vac. Sci. Technol. B 5 785
[5] Ashkenazy Y, Horwitz L P, Levitan J, Lewkowicz M and Rothschild Y 1995 Phys. Rev. Lett. 75 1070
[6] Zhang Y H, Jorg K, Robert K and Klaus P H 1996 Phys. Rev. Lett. 77 3001
[7] Huang Y Y, Li W, Ma W Q, Qin H and Zhang Y H 2012 Chin. Sci. Bull. 57 2070
[8] Li W, Yaara A, Igor R, Song H L, Huang Y Y, Klaus B, Michael R, Zhang Y H, Holger G T and Ido K 2015 Europhys. Lett. 112 30007
[9] Li W, Igor R, Yaara A, Huang Y Y, Song H L, Zhang Y H, Michael R and Ido K 2013 Phys. Rev. Lett. 111 044102
[10] Liu Y F, Chen C, Yang D D and Li X J 2020 Acta Phys. Sin. 69 100504 (in Chinese)
[11] Lars K, Miguel S C, Ingo F, Claudio M R, Romain N M and Guy S V 2017 Sci. Rep. 7 43428
[12] Liu W, Yin Z Z, Cheng X M, Peng Z Y, Song H L, Liu P H, Tong X H and Zhang Y H 2018 Chin. Sci. Bull. 63 1034
[13] Deeaud B, Chomette A, Lambert B, Regreny A, Romestain R and Edel P 1986 Solid State Commun. 57 90173
[14] Soskin S M, Khovanov I A and Mcclintock P E V 2015 Phys. Rev. Lett. 114 166802
[15] Xia J B 1990 Phys. Rev. B 41 3117
[16] Grahn H, Kastrup J, Ploog K, Bonilla L, Galan J, Kindelan M and Moscoso M 1995 Jpn. J. Appl. Phys. Part 34 4526
[17] Kwok S H, Merlin R, Grahn H T and Ploog K 1994 Phys. Rev. B 50 2007
[18] Zhang Y H, Klann R, Holger G T and Klaus P H 1997 Superlattices Microstruct 21 565
[19] Gettings C and Speake C C 2019 Rev. Sci. Instrum. 90 025004
[20] Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimori S, Yoshimura K and Davis P 2009 IEEE J. Quantum Electron. 45 1367
[21] Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T and Davis P 2010 Opt. Express 18 5512
[22] Marcin P P, Antonio J and Maciej O 2015 IEEE Sens. J. 15 26838
[23] Xu R, Wen L Y, Wang Z J, Zhao H, Mu G, Zeng Z Q, Zhou M, Bohm S, Zhang H, Wu Y H, Runge E and Lei Y 2020 Adv. Funct. Mater. 30 2005170
[24] Guo H, Tang W Z, Liu Y and Wei W 2018 Phys. Rev. E 81 051137
[25] Wang A B, Li P, Zhang J G, Zhang J Z, Li L and Wang Y C 2013 Opt. Express 21 20452
[26] Kanter I, Aviad Y, Reidler I, Cohen E and Rosenbluh M 2010 Nat. Photonics 4 58
[27] Li X, Cohen A B, Murphy T E and Roy R 2011 Opt. Lett. 36 1020
[28] Wang L S, Zhang T, Wang D M, Wu D Y, Zhou L, Wu J, Liu X Y and Wang A B 2017 Acta Phys. Sin. 66 234205 (in Chinese)
[29] Wang k, Yan Q, Yu S, Qi X, Zhou Y and Tang Z 2014 VLSI Design 2014 1
[30] Cicalese F, Gargano L and Vaccaro U 2019 IEEE Trans. Inf. Theory 64 2220
[31] Liu Y F, Yang D D, Zheng H and Wang L X 2017 Chin. Phys. B 26 120502
[32] Hosmer D W, Hosmer T, Hosmer T, Le CS and Lemeshwo S 1997 Statistis Medicine 16 965
[33] Gomathy K, Balakrishnan M, Pandiselvam R 2019 J. Food Process Eng. 42 13280
[34] Qu X L and Gu J J 2020 RSC Advanes 10 1243
[35] Kini R N, Kent A J and Henini M 2009 Phys. Rev. B 80 35335
[36] Fasolino A, Molinari E and Maan C J 1987 Superlattices Microstruct 3 117
[37] Greenaway M T, Balanov A G, Fowler D, Kent A J and Fromhold T M 2010 Phys. Rev. B 81 235313
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[7] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[10] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[13] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[14] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[15] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
No Suggested Reading articles found!