Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080301    DOI: 10.1088/1674-1056/ac70c3
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B Prev   Next  

Exploring Majorana zero modes in iron-based superconductors

Geng Li(李更)1,2,3, Shiyu Zhu(朱诗雨)1,2, Peng Fan(范朋)1,2, Lu Cao(曹路)1,2, and Hong-Jun Gao(高鸿钧)1,2,3,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Majorana zero modes (MZMs) are Majorana-fermion-like quasiparticles existing in crystals or hybrid platforms with topologically non-trivial electronic structures. They obey non-Abelian braiding statistics and are considered promising to realize topological quantum computing. Discovery of MZM in the vortices of the iron-based superconductors (IBSs) has recently fueled the Majorana research in a way which not only removes the material barrier requiring construction of complicated hybrid artificial structures, but also enables observation of pure MZMs under higher temperatures. So far, MZMs have been observed in iron-based superconductors including FeTe0.55Se0.45, (Li0.84Fe0.16)OHFeSe, CaKFe4As4, and LiFeAs. In this topical review, we present an overview of the recent STM studies on the MZMs in IBSs. We start with the observation of MZMs in the vortices in FeTe0.55Se0.45 and discuss the pros and cons of FeTe0.55Se0.45 compared with other platforms. We then review the following up discovery of MZMs in vortices of CaKFe4As4, impurity-assisted vortices of LiFeAs, and quantum anomalous vortices in FeTe0.55Se0.45, illustrating the pathway of the developments of MZM research in IBSs. Finally, we give perspective on future experimental works in this field.
Keywords:  Majorana zero mode      iron-based superconductors      topological surface states      scanning tunneling microscopy  
Received:  07 April 2022      Revised:  17 May 2022      Accepted manuscript online:  18 May 2022
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  74.25.-q (Properties of superconductors)  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: The work is supported by the Ministry of Science and Technology of China (Grant No. 2019YFA0308500) and the Chinese Academy of Sciences (Grant Nos. XDB28000000 and YSBR-003).
Corresponding Authors:  Hong-Jun Gao     E-mail:  hjgao@iphy.ac.cn

Cite this article: 

Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧) Exploring Majorana zero modes in iron-based superconductors 2022 Chin. Phys. B 31 080301

[1] Majorana E 1937 Nuovo Ciment 14 171
[2] Alicea J 2012 Rep. Prog. Phys. 75 076501
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Wilczek F 2009 Nat. Phys. 5 614
[5] Kitaev A Y 2003 Ann. Phys-new. York. 303 2
[6] Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113
[7] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[8] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K and Alicea J 2016 Phys. Rev. X 6 031016
[9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[10] Read N and Green D 2000 Phys. Rev. B 61 10267
[11] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[12] Kitaev A Y 2001 Phys. Uspekhi 44 131
[13] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[14] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[15] Braunecker B and Simon P 2013 Phys. Rev. Lett. 111 147202
[16] Klinovaja J, Stano P, Yazdani A and Loss D 2013 Phys. Rev. Lett. 111 186805
[17] Nadj-Perge S, Drozdov I K, Bernevig B A and Yazdani A 2013 Phys. Rev. B 88 020407
[18] Vazifeh M M and Franz M 2013 Phys. Rev. Lett. 111 206802
[19] Li J, Neupert T, Wang Z J, MacDonald A H, Yazdani A and Bernevig B A 2016 Nat. Commun. 7 12297
[20] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[21] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[22] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401
[23] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P and Marcus C M 2016 Science 354 1557
[24] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
[25] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[26] Ruby M, Pientka F, Peng Y, von Oppen F, Heinrich B W and Franke K J 2015 Phys. Rev. Lett. 115 197204
[27] Ruby M, Heinrich B W, Peng Y, von Oppen F and Franke K J 2017 Nano Lett. 17 4473
[28] Kim H, Palacio-Morales A, Posske T, Rozsa L, Palotas K, Szunyogh L, Thorwart M and Wiesendanger R 2018 Sci. Adv. 4 eaar5251
[29] Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R and Wiebe J 2021 Nat. Phys. 17 943
[30] Schneider L, Beck P, Neuhaus-Steinmetz J, Rozsa L, Posske T, Wiebe J and Wiesendanger R 2022 Nat. Nanotechnol. 17 384
[31] Palacio-Morales A, Mascot E, Cocklin S, Kim H, Rachel S, Morr D K and Wiesendanger R 2019 Sci. Adv. 5 eaav6600
[32] Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T and Liljeroth P 2020 Nature 588 424
[33] Kezilebieke S, Silveira O J, Huda M N, Vano V, Aapro M, Ganguli S C, Lahtinen J, Mansell R, van Dijken S, Foster A S and Liljeroth P 2021 Adv. Mater. 33 2006850
[34] Nayak A K, Steinbok A, Roet Y, Koo J, Margalit G, Feldman I, Almoalem A, Kanigel A, Fiete G A, Yan B H, Oreg Y, Avraham N and Beidenkopf H 2021 Nat. Phys. 17 1413
[35] Kezilebieke S, Vano V, Huda M N, Aapro M, Ganguli S C, Liljeroth P and Lado J L 2022 Nano Lett. 22 328
[36] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
[37] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[38] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H and Shin S 2018 Science 360 182
[39] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
[40] Li G, Zhu S Y, Wang D F, Wang Y L and Gao H J 2021 Supercond. Sci. Tech. 34 073001
[41] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J and Kotliar G 2022 Nature 601 35
[42] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056
[43] Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J and Ding H 2020 Nat. Commun. 11 5688
[44] Kong L Y, Cao L, Zhu S Y, Papaj M, Dai G Y, Li G, Fan P, Liu W Y, Yang F Z, Wang X C, Du S X, Jin C Q, Fu L, Gao H J and Ding H 2021 Nat. Commun. 12 4146
[45] Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H and Gao H J 2020 Science 367 189
[46] Wang Z Y, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104
[47] Chen C, Jiang K, Zhang Y, Liu C F, Liu Y, Wang Z Q and Wang J 2020 Nat. Phys. 16 536
[48] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[49] Caroli C, De Gennes P G and Matricon J 1964 Phys. Lett. 9 307
[50] Hess H F, Robinson R B and Waszczak J V 1990 Phys. Rev. Lett. 64 2711
[51] Zhang P, Richard P, Xu N, Xu Y M, Ma J, Qian T, Fedorov A V, Denlinger J D, Gu G D and Ding H 2014 Appl. Phys. Lett. 105 172601
[52] Zhang P, Wang Z J, Wu X X, Yaji K, Ishida Y, Kohama Y, Dai G Y, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X C, Jin C Q, Hu J P, Thomale R, Sumida K, Wu S L, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M and Shin S 2019 Nat. Phys. 15 41
[53] Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X and Fang Z 2015 Phys. Rev. B 92 115119
[54] Xu G, Lian B, Tang P Z, Qi X L and Zhang S C 2016 Phys. Rev. Lett. 117 047001
[55] Chiu C K, Machida T, Huang Y Y, Hanaguri T and Zhang F C 2020 Sci. Adv. 6 eaay0443
[56] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181
[57] Liu C X, Sau J D, Stanescu T D and Das Sarma S 2017 Phys. Rev. B 96 075161
[58] Moore C, Stanescu T D and Tewari S 2018 Phys. Rev. B 97 165302
[59] Moore C, Zeng C C, Stanescu T D and Tewari S 2018 Phys. Rev. B 98 155314
[60] Flensberg K 2010 Phys. Rev. B 82 180516
[61] Setiawan F, Liu C X, Sau J D and Das Sarma S 2017 Phys. Rev. B 96 184520
[62] Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001
[63] Wimmer M, Akhmerov A R, Dahlhaus J P and Beenakker C W J 2011 New J. Phys. 13 053016
[64] Sau J 2020 Science 367 145
[65] Sau J, Simon S, Vishveshwara S and Williams J R 2020 Nature Reviews Physics 2 667
[66] He X, Li G, Zhang J, Karki A B, Jin R, Sales B C, Sefat A S, McGuire M A, Mandrus D and Plummer E W 2011 Phys. Rev. B 83 220502
[67] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410
[68] Meier W R, Kong T, Bud'ko S L and Canfield P C 2017 Phys. Rev. Materials 1 013401
[69] Gao M A, Ma F J, Lu Z Y and Xiang T 2010 Phys. Rev. B 81 193409
[70] Wang X C, Zhang S J, Liu Q Q, Deng Z, Lv Y X, Zhu J L, Feng S M and Jin C Q 2011 High Pressure Res. 31 7
[71] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[72] Hanaguri T, Kitagawa K, Matsubayashi K, Mazaki Y, Uwatoko Y and Takagi H 2012 Phys. Rev. B 85 214505
[73] Chi S, Grothe S, Liang R X, Dosanjh P, Hardy W N, Burke S A, Bonn D A and Pennec Y 2012 Phys. Rev. Lett. 109 087002
[74] Allan M P, Rost A W, Mackenzie A P, Xie Y, Davis J C, Kihou K, Lee C H, Iyo A, Eisaki H and Chuang T M 2012 Science 336 563
[75] Yin J X, Zhang S S, Dai G Y, Zhao Y Y, Kreisel A, Macam G, Wu X X, Miao H, Huang Z Q, Martiny J H J, Andersen B M, Shumiya N, Multer D, Litskevich M, Cheng Z J, Yang X, Cochran T A, Chang G Q, Belopolski I, Xing L Y, Wang X C, Gao Y, Chuang F C, Lin H, Wang Z Q, Jin C Q, Bang Y and Hasan M Z 2019 Phys. Rev. Lett. 123 217004
[76] Yim C M, Trainer C, Aluru R, Chi S, Hardy W N, Liang R X, Bonn D and Wahl P 2018 Nat. Commun. 9 2602
[77] Wang Y, Hirschfeld P J and Vekhter I 2012 Phys. Rev. B 85 020506
[78] Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T and Wang S C 2012 Phys. Rev. Lett. 108 037002
[79] Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
[80] Konig E J and Coleman P 2019 Phys. Rev. Lett. 122 207001
[81] Qin S S, Hu L H, Le C C, Zeng J F, Zhang F C, Fang C and Hu J P 2019 Phys. Rev. Lett. 123 027003
[82] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543
[83] Jiang K, Dai X and Wang Z Q 2019 Phys. Rev. X 9 011033
[84] Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H and Gao H J 2021 Nat. Commun. 12 1348
[85] Wang D, Wiebe J, Zhong R, Gu G and Wiesendanger R 2021 Phys. Rev. Lett. 126 076802
[86] Cao L, Liu W Y, Li G, Dai G Y, Zheng Q, Wang Y X, Jiang K, Zhu S Y, Huang L, Kong L Y, Yang F Z, Wang X C, Zhou W, Lin X, Hu J P, Jin C Q, Ding H and Gao H J 2021 Nat. Commun. 12 6312
[87] Edelberg D, Kumar H, Shenoy V, Ochoa H and Pasupathy A N 2020 Nat. Phys. 16 1097
[88] Mao J H, Milovanovic S P, Andelkovic M, Lai X Y, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y H and Andrei E Y 2020 Nature 584 215
[89] Miao H, Wang L M, Richard P, Wu S F, Ma J, Qian T, Xing L Y, Wang X C, Jin C Q, Chou C P, Wang Z, Ku W and Ding H 2014 Phys. Rev. B 89 220503
[90] Sau J D, Clarke D J and Tewari S 2011 Phys. Rev. B 84 094505
[91] van Heck B, Akhmerov A R, Hassler F, Burrello M and Beenakker C W J 2012 New J. Phys. 14 035019
[92] Vijay S and Fu L 2016 Phys. Rev. B 94 235446
[93] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M and Freedman M H 2017 Phys. Rev. B 95 235305
[1] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
[2] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[3] Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 066802.
[4] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[5] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[6] Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit
Fan Zhang(张凡), Xingyuan Hou(侯兴元), Yuxuan Jiang(姜宇轩), Zongyuan Zhang(张宗源), Yubing Tu(涂玉兵), Xiangde Zhu(朱相德), Genfu Chen(陈根富), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 067401.
[7] Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2
Haipeng Zhao(赵海鹏), Yin Liu(刘隐), Shengguo Yang(杨胜国), Chenfang Lin(林陈昉), Mingxing Chen(陈明星), Kai Braun, Xinyi Luo(罗心仪), Siyu Li(李思宇), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2024, 33(4): 046801.
[8] Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology
Zhenyu Yuan(袁震宇), Fazhi Yang(杨发枝), Baiqing Lv(吕佰晴), Yaobo Huang(黄耀波), Tian Qian(钱天), Jinpeng Xu(徐金朋), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(2): 026802.
[9] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[10] Manipulating charge density wave state in kagome compound RbV3Sb5
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春). Chin. Phys. B, 2023, 32(9): 096801.
[11] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[12] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[13] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[14] Effects of atomic corrugations on electronic structures in Pb1-xBix thin films
Pengju Li(李鹏举), Kun Xie(谢鹍), Yumin Xia(夏玉敏), Desheng Cai(蔡德胜), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2023, 32(6): 066101.
[15] Quasi-one-dimensional characters in topological semimetal TaNiTe5
Ni Ma(马妮), De-Yang Wang(王德阳), Ben-Rui Huang(黄本锐), Kai-Yi Li(李凯仪), Jing-Peng Song(宋靖鹏), Jian-Zhong Liu(刘建忠), Hong-Ping Mei(梅红萍), Mao Ye(叶茂), and Ang Li(李昂). Chin. Phys. B, 2023, 32(5): 056801.
No Suggested Reading articles found!