|
|
Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit |
Fan Zhang(张凡)1,2, Xingyuan Hou(侯兴元)3,4,5,†, Yuxuan Jiang(姜宇轩)6,3,‡, Zongyuan Zhang(张宗源)4,5, Yubing Tu(涂玉兵)4,5, Xiangde Zhu(朱相德)7, Genfu Chen(陈根富)1,2, and Lei Shan(单磊)3,4,5,8,§ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Center of Free Electron Laser and High Magnetic Field, Anhui University, Hefei 230601, China; 4 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 5 Key Laboratory of Structure and Functional Regulation of Hybrid Materials in Anhui University, Ministry of Education, Hefei 230601, China; 6 School of Physics and Materials Science, Anhui University, Hefei 230601, China; 7 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei 230031, China; 8 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract We revisited the vortex states of 2H-NbSe$_{2}$ towards zero fields by a low-temperature scanning tunneling microscope. Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices. Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex-vortex interactions. To clarify these issues, we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex-vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-I\!I superconductors especially based on an isolated vortex.
|
Received: 18 February 2024
Revised: 11 March 2024
Accepted manuscript online: 21 March 2024
|
PACS:
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
|
47.32.cb
|
(Vortex interactions)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403203), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802), the National Natural Science Foundation of China (Grant Nos. 12074002, 12374133, and 11804379), and the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01). Y. J. acknowledges the supports of the National Natural Science Foundation of China (Grant No. 12274001) and the Natural Science Foundation of Anhui Province (Grant No. 2208085MA09). |
Corresponding Authors:
Xingyuan Hou, Yuxuan Jiang, Lei Shan
E-mail: xyhou@ahu.edu.cn;yuxuan.jiang@ahu.edu.cn;lshan@ahu.edu.cn
|
Cite this article:
Fan Zhang(张凡), Xingyuan Hou(侯兴元), Yuxuan Jiang(姜宇轩), Zongyuan Zhang(张宗源), Yubing Tu(涂玉兵), Xiangde Zhu(朱相德), Genfu Chen(陈根富), and Lei Shan(单磊) Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit 2024 Chin. Phys. B 33 067401
|
[1] Abrikosov A A 1957 Soviet Physics-JETP 5 1174 [2] Gor'kov L 1959 Zh. Exsper. Teoret. Fiz 36 1918 [3] Caroli C, De Gennes P and Matricon J 1964 Physics Letters 9 307 [4] Hayashi N, Isoshima T, Ichioka M and Machida K 1998 Phys. Rev. Lett. 80 2921 [5] Gygi F m c and Schlüter M 1991 Phys. Rev. B 43 7609 [6] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [7] Sato M and Ando Y 2017 Reports on Progress in Physics 80 076501 [8] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181 [9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [10] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 [11] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333 [12] Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104 [13] Li M, Li G, Cao L, Zhou X, Wang X, Jin C, Chiu C K, Pennycook S J, Wang Z and Gao H J 2022 Nature 606 890 [14] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056 [15] Guan S Y, Chen P J, Chu M W, Sankar R, Chou F, Jeng H T, Chang C S and Chuang T M 2016 Science Advances 2 e1600894 [16] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026 [17] Suderow H, Guillamón I, Rodrigo J G and Vieira S 2014 Superconductor Science and Technology 27 063001 [18] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353 [19] Hoffman J E 2011 Reports on Progress in Physics 74 124513 [20] Yin J X, Pan S H and Zahid Hasan M 2021 Nature Reviews Physics 3 249 [21] Liu X, Chong Y X, Sharma R and Davis J C S 2021 Nat. Mater. 20 1480 [22] Callaghan F D, Laulajainen M, Kaiser C V and Sonier J E 2005 Phys. Rev. Lett. 95 197001 [23] Sonier J E 2004 J. Phys.: Condens. Matter 16 S4499 [24] Pttinger B and Klein U 1993 Phys. Rev. Lett. 70 2806 [25] Ichioka M, Hasegawa A and Machida K 1999 Phys. Rev. B 59 184 [26] Canel E 1965 Physics Letters 16 101 [27] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811 [28] Kim H, Nagai Y, Rózsa L, Schreyer D and Wiesendanger R 2021 Applied Physics Reviews 8 031417 [29] Hayashi N, Ichioka M and Machida K 1996 Phys. Rev. Lett. 77 4074 [30] Nagai Y, Ueno Y, Kato Y and Hayashi N 2006 J. Phys. Soc. Jpn. 75 104701 [31] Rahn D J, Hellmann S, Kalläne M, Sohrt C, Kim T K, Kipp L and Rossnagel K 2012 Phys. Rev. B 85 224532 [32] Hess H F, Robinson R B and Waszczak J V 1990 Phys. Rev. Lett. 64 2711 [33] Dalrymple B, Mroczkowski S and Prober D 1986 Journal of Crystal Growth 74 575 [34] Ichioka M, Hayashi N and Machida K 1997 Phys. Rev. B 55 6565 [35] Sanna A, Pellegrini C, Liebhaber E, Rossnagel K, Franke K J and Gross E K U 2022 npj Quantum Materials 7 6 [36] Galvis J A, Herrera E, Berthod C, Vieira S, Guillamón I and Suderow H 2018 Communications Physics 1 30 [37] Hayashi N, Ichioka M and Machida K 1997 Phys. Rev. B 56 9052 [38] Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J and Fischer O 2002 Phys. Rev. Lett. 89 187003 [39] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett. 112 217001 [40] Fente A, Herrera E, Guillamon I, Suderow H, Ma ńas Valero S, Galbiati M, Coronado E and Kogan V G 2016 Phys. Rev. B 94 014517 [41] Fente A, Meier W R, Kong T, Kogan V G, Bud’ko S L, Canfield P C, Guillamón I and Suderow H 2018 Phys. Rev. B 97 134501
[42] Ichioka M, Kogan V G and Schmalian J 2017 Phys. Rev. B 95 064512 [43] Noat Y, Silva-Guillén J A, Cren T, Cherkez V, Brun C, Pons S, Debontridder F, Roditchev D, Sacks W, Cario L, Ordejón P, García A and Canadell E 2015 Phys. Rev. B 92 134510 [44] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [45] Kramer L and Pesch W 1974 Zeitschrift für Physik 269 59 [46] Ichioka M, Machida K, Nakai N and Miranović P 2004 Phys. Rev. B 70 144508 [47] Nakai N, Ichioka M and Machida K 2002 J. Phys. Soc. Jpn. 71 23 [48] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003 [49] Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Guss J, Gartin P B, Wilde J M, Kreyssig A, McQueeney R J, Goldman A I, Mishra V, Hirschfeld P J and Prozorov R 2018 Nat. Commun. 9 2796 [50] Zhang S S, Yin J X, Dai G, Zhao L, Chang T R, et al. 2020 Phys. Rev. B 101 100507 [51] Fasano Y, Herbsommer J A, de la Cruz F, Pardo F, Gammel P L, Bucher E and Bishop D J 1999 Phys. Rev. B 60 R15047 [52] Fasano Y and Menghini M 2008 Superconductor Science and Technology 21 023001 [53] Chen X H, Dai P C, Feng D L, Xiang T and Zhang F C 2014 National Science Review 1 371 [54] Gu Q Q and Wen H H 2022 The Innovation 3 100202 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|