Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067401    DOI: 10.1088/1674-1056/ad362d
RAPID COMMUNICATION Prev   Next  

Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit

Fan Zhang(张凡)1,2, Xingyuan Hou(侯兴元)3,4,5,†, Yuxuan Jiang(姜宇轩)6,3,‡, Zongyuan Zhang(张宗源)4,5, Yubing Tu(涂玉兵)4,5, Xiangde Zhu(朱相德)7, Genfu Chen(陈根富)1,2, and Lei Shan(单磊)3,4,5,8,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Center of Free Electron Laser and High Magnetic Field, Anhui University, Hefei 230601, China;
4 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
5 Key Laboratory of Structure and Functional Regulation of Hybrid Materials in Anhui University, Ministry of Education, Hefei 230601, China;
6 School of Physics and Materials Science, Anhui University, Hefei 230601, China;
7 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, and University of Science and Technology of China, Hefei 230031, China;
8 Hefei National Laboratory, Hefei 230088, China
Abstract  We revisited the vortex states of 2H-NbSe$_{2}$ towards zero fields by a low-temperature scanning tunneling microscope. Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices. Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex-vortex interactions. To clarify these issues, we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex-vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-I\!I superconductors especially based on an isolated vortex.
Keywords:  vortex states      zero-bias conductance peak      scanning tunneling microscopy  
Received:  18 February 2024      Revised:  11 March 2024      Accepted manuscript online:  21 March 2024
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  47.32.cb (Vortex interactions)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403203), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802), the National Natural Science Foundation of China (Grant Nos. 12074002, 12374133, and 11804379), and the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01). Y. J. acknowledges the supports of the National Natural Science Foundation of China (Grant No. 12274001) and the Natural Science Foundation of Anhui Province (Grant No. 2208085MA09).
Corresponding Authors:  Xingyuan Hou, Yuxuan Jiang, Lei Shan     E-mail:  xyhou@ahu.edu.cn;yuxuan.jiang@ahu.edu.cn;lshan@ahu.edu.cn

Cite this article: 

Fan Zhang(张凡), Xingyuan Hou(侯兴元), Yuxuan Jiang(姜宇轩), Zongyuan Zhang(张宗源), Yubing Tu(涂玉兵), Xiangde Zhu(朱相德), Genfu Chen(陈根富), and Lei Shan(单磊) Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit 2024 Chin. Phys. B 33 067401

[1] Abrikosov A A 1957 Soviet Physics-JETP 5 1174
[2] Gor'kov L 1959 Zh. Exsper. Teoret. Fiz 36 1918
[3] Caroli C, De Gennes P and Matricon J 1964 Physics Letters 9 307
[4] Hayashi N, Isoshima T, Ichioka M and Machida K 1998 Phys. Rev. Lett. 80 2921
[5] Gygi F m c and Schlüter M 1991 Phys. Rev. B 43 7609
[6] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[7] Sato M and Ando Y 2017 Reports on Progress in Physics 80 076501
[8] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181
[9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[10] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
[11] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
[12] Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104
[13] Li M, Li G, Cao L, Zhou X, Wang X, Jin C, Chiu C K, Pennycook S J, Wang Z and Gao H J 2022 Nature 606 890
[14] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056
[15] Guan S Y, Chen P J, Chu M W, Sankar R, Chou F, Jeng H T, Chang C S and Chuang T M 2016 Science Advances 2 e1600894
[16] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[17] Suderow H, Guillamón I, Rodrigo J G and Vieira S 2014 Superconductor Science and Technology 27 063001
[18] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
[19] Hoffman J E 2011 Reports on Progress in Physics 74 124513
[20] Yin J X, Pan S H and Zahid Hasan M 2021 Nature Reviews Physics 3 249
[21] Liu X, Chong Y X, Sharma R and Davis J C S 2021 Nat. Mater. 20 1480
[22] Callaghan F D, Laulajainen M, Kaiser C V and Sonier J E 2005 Phys. Rev. Lett. 95 197001
[23] Sonier J E 2004 J. Phys.: Condens. Matter 16 S4499
[24] Pttinger B and Klein U 1993 Phys. Rev. Lett. 70 2806
[25] Ichioka M, Hasegawa A and Machida K 1999 Phys. Rev. B 59 184
[26] Canel E 1965 Physics Letters 16 101
[27] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[28] Kim H, Nagai Y, Rózsa L, Schreyer D and Wiesendanger R 2021 Applied Physics Reviews 8 031417
[29] Hayashi N, Ichioka M and Machida K 1996 Phys. Rev. Lett. 77 4074
[30] Nagai Y, Ueno Y, Kato Y and Hayashi N 2006 J. Phys. Soc. Jpn. 75 104701
[31] Rahn D J, Hellmann S, Kalläne M, Sohrt C, Kim T K, Kipp L and Rossnagel K 2012 Phys. Rev. B 85 224532
[32] Hess H F, Robinson R B and Waszczak J V 1990 Phys. Rev. Lett. 64 2711
[33] Dalrymple B, Mroczkowski S and Prober D 1986 Journal of Crystal Growth 74 575
[34] Ichioka M, Hayashi N and Machida K 1997 Phys. Rev. B 55 6565
[35] Sanna A, Pellegrini C, Liebhaber E, Rossnagel K, Franke K J and Gross E K U 2022 npj Quantum Materials 7 6
[36] Galvis J A, Herrera E, Berthod C, Vieira S, Guillamón I and Suderow H 2018 Communications Physics 1 30
[37] Hayashi N, Ichioka M and Machida K 1997 Phys. Rev. B 56 9052
[38] Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J and Fischer O 2002 Phys. Rev. Lett. 89 187003
[39] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett. 112 217001
[40] Fente A, Herrera E, Guillamon I, Suderow H, Ma ńas Valero S, Galbiati M, Coronado E and Kogan V G 2016 Phys. Rev. B 94 014517
[41] Fente A, Meier W R, Kong T, Kogan V G, Bud’ko S L, Canfield P C, Guillamón I and Suderow H 2018 Phys. Rev. B 97 134501

[42] Ichioka M, Kogan V G and Schmalian J 2017 Phys. Rev. B 95 064512
[43] Noat Y, Silva-Guillén J A, Cren T, Cherkez V, Brun C, Pons S, Debontridder F, Roditchev D, Sacks W, Cario L, Ordejón P, García A and Canadell E 2015 Phys. Rev. B 92 134510
[44] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[45] Kramer L and Pesch W 1974 Zeitschrift für Physik 269 59
[46] Ichioka M, Machida K, Nakai N and Miranović P 2004 Phys. Rev. B 70 144508
[47] Nakai N, Ichioka M and Machida K 2002 J. Phys. Soc. Jpn. 71 23
[48] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[49] Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Guss J, Gartin P B, Wilde J M, Kreyssig A, McQueeney R J, Goldman A I, Mishra V, Hirschfeld P J and Prozorov R 2018 Nat. Commun. 9 2796
[50] Zhang S S, Yin J X, Dai G, Zhao L, Chang T R, et al. 2020 Phys. Rev. B 101 100507
[51] Fasano Y, Herbsommer J A, de la Cruz F, Pardo F, Gammel P L, Bucher E and Bishop D J 1999 Phys. Rev. B 60 R15047
[52] Fasano Y and Menghini M 2008 Superconductor Science and Technology 21 023001
[53] Chen X H, Dai P C, Feng D L, Xiang T and Zhang F C 2014 National Science Review 1 371
[54] Gu Q Q and Wen H H 2022 The Innovation 3 100202
[1] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[2] Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 066802.
[3] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[4] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[5] Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2
Haipeng Zhao(赵海鹏), Yin Liu(刘隐), Shengguo Yang(杨胜国), Chenfang Lin(林陈昉), Mingxing Chen(陈明星), Kai Braun, Xinyi Luo(罗心仪), Siyu Li(李思宇), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2024, 33(4): 046801.
[6] Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology
Zhenyu Yuan(袁震宇), Fazhi Yang(杨发枝), Baiqing Lv(吕佰晴), Yaobo Huang(黄耀波), Tian Qian(钱天), Jinpeng Xu(徐金朋), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(2): 026802.
[7] Manipulating charge density wave state in kagome compound RbV3Sb5
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春). Chin. Phys. B, 2023, 32(9): 096801.
[8] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[9] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[10] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[11] Effects of atomic corrugations on electronic structures in Pb1-xBix thin films
Pengju Li(李鹏举), Kun Xie(谢鹍), Yumin Xia(夏玉敏), Desheng Cai(蔡德胜), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2023, 32(6): 066101.
[12] Quasi-one-dimensional characters in topological semimetal TaNiTe5
Ni Ma(马妮), De-Yang Wang(王德阳), Ben-Rui Huang(黄本锐), Kai-Yi Li(李凯仪), Jing-Peng Song(宋靖鹏), Jian-Zhong Liu(刘建忠), Hong-Ping Mei(梅红萍), Mao Ye(叶茂), and Ang Li(李昂). Chin. Phys. B, 2023, 32(5): 056801.
[13] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[14] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[15] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
No Suggested Reading articles found!