Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080204    DOI: 10.1088/1674-1056/ac4651
GENERAL Prev   Next  

Evolution of donations on scale-free networks during a COVID-19 breakout

Xian-Jia Wang(王先甲)1,2 and Lin-Lin Wang(王琳琳)1,†
1 Economics and Management School, Wuhan University, Wuhan 430072, China;
2 Institute of Systems Engineering, Wuhan University, Wuhan 430072, China
Abstract  Having a large number of timely donations during the early stages of a COVID-19 breakout would normally be considered rare. Donation is a special public goods game with zero yield for donors, and it has the characteristics of the prisoners' dilemma. This paper discusses why timely donations in the early stages of COVID-19 occurred. Based on the idea that donation is a strategy adopted by players during interconnection on account of their understanding of the environment, donation-related populations are placed on social networks and the inter-correlation structures in the population are described by scale-free networks. Players in donation-related populations are of four types: donors, illegal beneficiaries, legal beneficiaries, and inactive people. We model the evolutionary game of donation on a scale-free network. Donors, illegal beneficiaries and inactive people learn and update strategies under the Fermi update rule, whereas the conversion between legal beneficiaries and the other three types is determined by the environment surrounding the players. We study the evolution of cooperative action when the agglomeration coefficient, the parameters of the utility function, the noise intensity, the utility coefficient, the donation coefficient and the initial states of the population on the scale-free network change. For population sizes of 50, 100, 150, and 200, we give the utility functions and the agglomeration coefficients for promoting cooperation and study the corresponding steady states and structural characteristics of the population. We identify the best ranges of the noise intensity K, the donation coefficient α and the utility coefficient β for promoting cooperation at different population sizes. Furthermore, with the increase of the population size, the donor traps are found. At the same time, it is discovered that the initial states of the population have a great impact on the steady states; thus the upper and lower triangle phenomena are proposed. We also find that the population size itself is also an important factor for promoting donation, pointing out the direction of efforts to further promote donation and achieve better social homeostasis under the donation model.
Keywords:  donation      public goods game      evolutionary game      scale-free network  
Received:  12 October 2021      Revised:  13 December 2021      Accepted manuscript online:  24 December 2021
PACS:  02.50.Le (Decision theory and game theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 72031009 and 71871171) and the National Social Science Foundation of China (Grant No. 20&ZD058).
Corresponding Authors:  Lin-Lin Wang     E-mail:  2015301580305@whu.edu.cn

Cite this article: 

Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳) Evolution of donations on scale-free networks during a COVID-19 breakout 2022 Chin. Phys. B 31 080204

[1] Hauert C, De Monte S and Hofbauer J 2002 J. Theor. Biol. 218 187
[2] Nowak M A and Sigmund K 2005 Nature 437 1291
[3] Balliet D, Mulder L B and Van Lange P A M 2011 Psychol. Bull. 137 594
[4] Alexander R D 1974 Annu. Rev. Ecol. Syst. 5 325
[5] Press W H and Dyson F J 2012 Proc. Natl. Acad. Sci. USA 109 10409
[6] Ohtsuki H, Hauert C, Lieberman E and Nowak M A 2006 Nature 441 502
[7] Nowak M A and May R M 1992 Nature 359 826
[8] Perc M 2009 New J. Phys. 11 033027
[9] Amaral M A, Wardil L, Perc M and da Silva J K L 2016 Phys. Rev. E. 93 042304
[10] Barabási A L and Oltvai Z N 2004 Nat. Rev. Genet. 5 101
[11] Yoshimura J and Jansen V A A 1996 Popul. Ecol. 38 165
[12] Zhang B Y, Li C and Tao Y 2016 Dyn. Games Appl. 6 567
[13] Li Y M, Du W B, Yang P, Wu T H, Wu D P and Perc M 2019 IEEE Internet Things J. 6 1866
[14] Bu Z, Li H J, Zhang C, Cao J, Li A and Shi Y 2020 IEEE T. Knowl Data En. 32 1348
[15] Daskalakis C, Goldberg P W and Papadimitriou C H 2009 Commun. ACM 52 89
[16] Dong Y, Ma S, Zhang B, Wang W X and Pacheco J M 2021 One Earth 4 1141
[17] Santos F C, Santos M D and Pacheco J M 2008 Nature 454 213
[18] Dawes R M, Orbell J M, Simmons R T and Alphons J C V 1986 Am. Polit. Sci. Rev. 80 1171
[19] Bagnoli M and Lipman B L 1989 Rev. Econ. Stud. 56 583
[20] Chaudhuri A 2011 Exp. Econ. 14 47
[21] Wilkinson G S 1984 Nature 308 181
[22] Valerio C 2015 Sci. Rep. 5 9916
[23] Wang Z, Jusup M, Wang R W, Shi L, Iwasa Y, Moreno Y and Kurths J 2017 Sci. Adv. 3 1601444
[24] Li H J, Bu Z, Wang Z and Cao J 2020 IEEE T. Ind. Inform. 16 5327
[25] Tran C, Shin W-Y and Spitz A 2022 ACM T. Knowl. Discov. D. 16 1
[26] Li H J, Bu Z, Wang Z, Pei J, Cao J and Shi Y 2022 IEEE T. Knowl. Data En. 34 2860
[27] Barabasi A L and Albert R 1999 Science 286 509
[28] Li H J, Wang L, Zhang Y and Perc M 2020 New J. Phys. 22 063035
[29] Li H J, Xu W Z, Song S P, Wang W X and Perc M 2021 Chaos Soliton. Fract. 151 111294
[30] Holme P and Kim B J 2002 Phys. Rev. E 65 026107
[31] Broido A D and Clauset A 2019 Nat. Commun. 10 1017
[32] Kleineberg K K 2017 Nat. Commun. 8 1888
[33] Santos F C, Rodrigues J F and Pacheco J M 2005 Phys. Rev. E 72 056128
[34] Gomez-Gardenes J, Campillo M, Fiona L M and Moreno Y 2007 Phys. Rev. Lett. 98 108103
[35] Perc M and Szolnoki A 2008 Phys. Rev. E 77 011904
[36] Rong Z and Wu Z X 2009 Europhys. Lett. 87 30001
[37] Xu X, Rong Z, Wu Z X, Zhou T and Tse C K 2017 Phys. Rev. E 95 052302
[38] Assenza S, Gómez-Gardeñes J and Latora V 2008 Phys. Rev. E 78 017101
[39] Du W B, Cao X B, Hu M B and Wang X J 2009 Epl 87 60004
[40] Li Y, Zhang J and Perc M 2018 Appl. Math. Comput. 320 437
[41] Brandt H and Sigmund K 2005 P Natl. Acad. Sci. USA. 102 2666
[42] Wang Z, Xu Z J and Zhang L Z 2010 Chin. Phys. B 19 110201
[43] Szolnoki A and Perc M 2010 Europhys. Lett. 92 38003
[44] Di S, Xiang Y and Zhao P 2022 B Iran. Math. Soc. 48 849
[45] Jiang C, Guo D and Xu R 2021 Appl. Intell. 51 1
[46] Szolnoki A, Perc M and Szabó G 2009 Phys. Rev. E 80 056109
[47] Szolnoki A and Danku Z 2018 Physica A 511 371
[48] Szolnoki A and Chen X 2017 Europhys. Lett. 120 58001
[49] Perc M 2016 Phys. Lett. A 380 2803
[50] Perc M 2011 New J. Phys. 13 123027
[51] Perc M, Gómez-Gardeñes J, Szolnoki A, Floría L M and Moreno Y 2013 J. R. Soc. Interface 10 20120997
[1] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[2] Fitness of others' evaluation effect promotes cooperation in spatial public goods game
Jian-Wei Wang(王建伟), Rong Wang(王蓉), and Feng-Yuan Yu(于逢源). Chin. Phys. B, 2021, 30(12): 128701.
[3] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[4] The evolution of cooperation in public good game with deposit
Xian-Jia Wang(王先甲), Wen-Man Chen(陈文嫚). Chin. Phys. B, 2019, 28(8): 080201.
[5] Evolutionary game dynamics of combining the Moran and imitation processes
Xian-Jia Wang(王先甲), Cui-Ling Gu(顾翠伶), Shao-Jie Lv(吕少杰), Ji Quan(全吉). Chin. Phys. B, 2019, 28(2): 020203.
[6] Stochastic evolutionary public goods game with first and second order costly punishments in finite populations
Ji Quan(全吉), Yu-Qing Chu(储育青), Wei Liu(刘伟), Xian-Jia Wang(王先甲), Xiu-Kang Yang(阳修康). Chin. Phys. B, 2018, 27(6): 060203.
[7] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[8] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[9] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[10] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[11] Biham-Middleton-Levine model in consideration of cooperative willingness
Pan Wei (盘薇), Xue Yu (薛郁), Zhao Rui (赵瑞), Lu Wei-Zhen (卢伟真). Chin. Phys. B, 2014, 23(5): 058902.
[12] Evolution of IPv6 Internet topology with unusual sudden changes
Ai Jun (艾均), Zhao Hai (赵海), Kathleen M. Carleyb, Su Zhan (苏湛), Li Hui (李辉). Chin. Phys. B, 2013, 22(7): 078902.
[13] Hysteresis behavior and nonequilibrium phase transition in a one-dimensional evolutionary game model
Hua Da-Yin (华达银). Chin. Phys. B, 2013, 22(4): 040512.
[14] Effects of node buffer and capacity on network traffic
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋). Chin. Phys. B, 2012, 21(9): 098902.
[15] An evolving network model with modular growth
Zou Zhi-Yun(邹志云), Liu Peng(刘鹏), Lei Li(雷立), and Gao Jian-Zhi(高健智) . Chin. Phys. B, 2012, 21(2): 028904.
No Suggested Reading articles found!